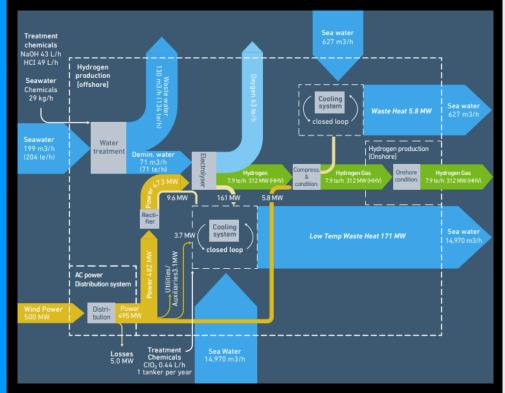
MOTT MACDONALD


Lessons learned from the European Offshore Wind to Hydrogen project

Eric Steltzer, Principal Project Manager, Offshore Wind Mott MacDonald

Introduction

Driven by European Union's 2050 decarbonization targets, hydrogen production from offshore wind resources is advancing and offering useful insights for the American market.

OFFSHORE WINDPOWER

Acknowledgements

North Sea Wind Power Hub Programme is a project by Energinet, Gasunie, Tennet, and co-financed by the Connecting Europe Facility of the European Union.

Mott MacDonald was the lead Engineering Consultant, advising on the feasibility assessments to the North Sea Wind Power Hub Programme.

Contact

Eric Steltzer eric.steltzer@mottmac.com 617-894-7397

Download the feasibility studies and other resources

Water resources

- Water resources are needed for multiple purposes, including hydrogen production and cooling.
- Seawater resources will require additional water treatment processing to prepare the water for electrolyzers.

Power curve assessment

 Power demand curves of the offshore wind generators must be performed to optimize the efficient production of hydrogen gas production.

Conceptual design

- There are many electrolyzer designs to consider, including onshore generation, hub structure, artificial island, and hydrogen wind turbines.
- The delivery of the fuel and whether it is injected into an existing pipeline, storage, or dedicated pipeline will inform the design of the system.

Strategic planning

- Feasibility studies are necessary to identify opportunities, socialize concepts, and avoid costly pitfalls.
- Cost reductions can be supported through modular and scalable construction.

Delivery cost

 It's more cost-effective to transport hydrogen gas to shore via pipeline than it is to transfer electricity via HVDC system.