Economic Benefits of Remote Sensing for Projects in Development

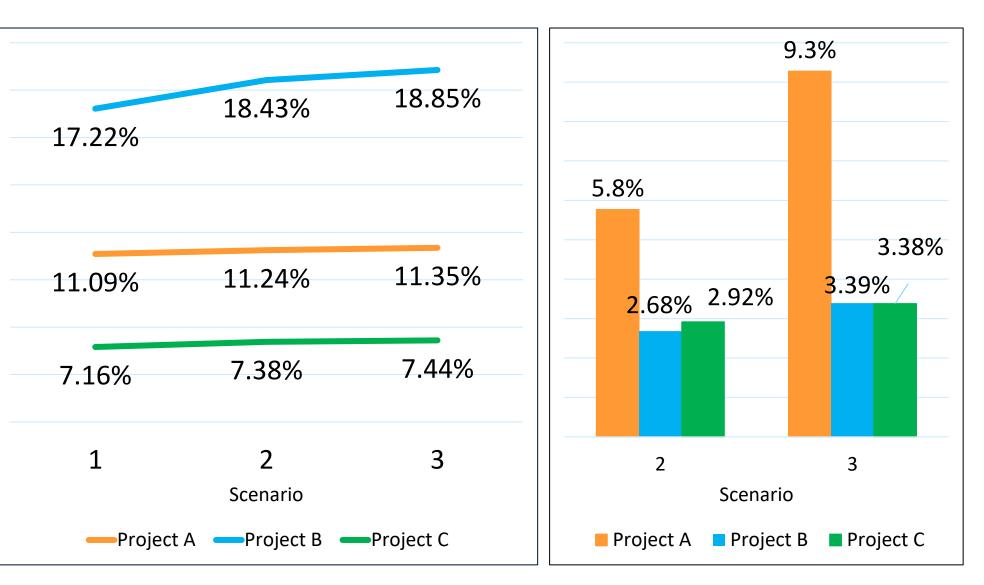
Marie Drevets, Sydney Dobrzynski

Lidar is a useful addition to MET campaigns allowing easy deployment and hub-height wind speed measurements. We explored vertical and spatial uncertainty considering LiDAR at 3 projects and modeled financing metrics assuming PTC.

Projects

	A	В	C
# MET Masts	10	4	1
# WTG	134	60	15
Hub Height (m)	98	117	119
HH Wind Speed (m/s)	9.5	7.6	9

Scenarios


- 1. No LiDAR
- 2. LiDAR collocated with a 60m MET mast for 6+ months
- 3. LiDAR collocated + 1 year standalone.

Results

		Project A	Project B	Project C
	1: No LiDAR	79.6%	73.5%	69.2%
	2: Collocated LiDAR	80.1%	74.8%	71.7%
	3: Collocated + Standalone	80.4%	75.2 %	72.9%

1-Year P99/P50 Ratio

Left: 30-Year Unlevered Returns- IRR

Right: % Increase in Debt Sizing

Discussion

- LiDAR is most impactful on projects with high vertical and spatial uncertainty
- Tangible financing benefit through increased debt sizing

Acknowledgements:
Adnan Shah, DNV
Rebecca Wulfsohn, Invenergy

Marie Drevets, <u>mdrevets@invenergy.com</u>
Sydney Dobrzynski, <u>sdobrzynski@invenergy.com</u>

