Filling Gaps in **Complex Terrain** Using LightGBM Lucas Jurema

Intro

This study introduces a new Measure Correlate Predict (MCP) method for data reconstruction using the Machine Learning (ML) model LightGBM [1], as an alternative for filling gaps in complex terrain, addressing its impact on wind resource patterns.

Methods

- The validation set comprised 3 clusters representing regions with different terrain complexities: non-complex (NCT), complex I (CT I - shear inversion), and complex II (CT II - Multimodal Distribution). The clusters contained 9, 9, and 4 metmasts, respectively, each with 4 types of artificial gaps (1, 10, 100, 1000 hours) per metmast.
- Benchmarking using the MTS method results from the Windographer software.
- Single parameterization for all sets.
- Metrics: Mean Absolute Error (MAE), Pearson's chi-squared test statistic as the Distribution Error (DE) [2] and Energetic Error (EE) calculated using the NREL Onshore Wind Turbine Power Curves [3].

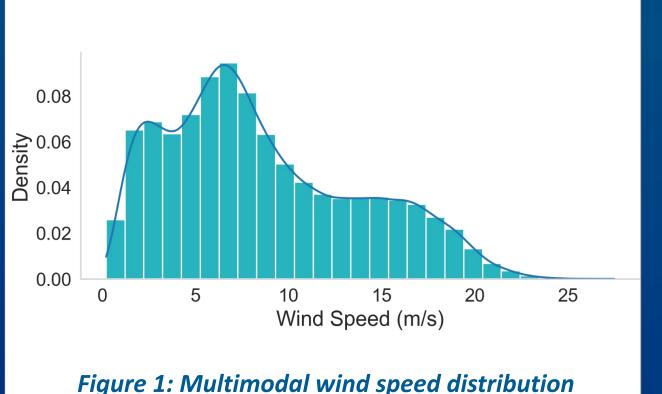
Results

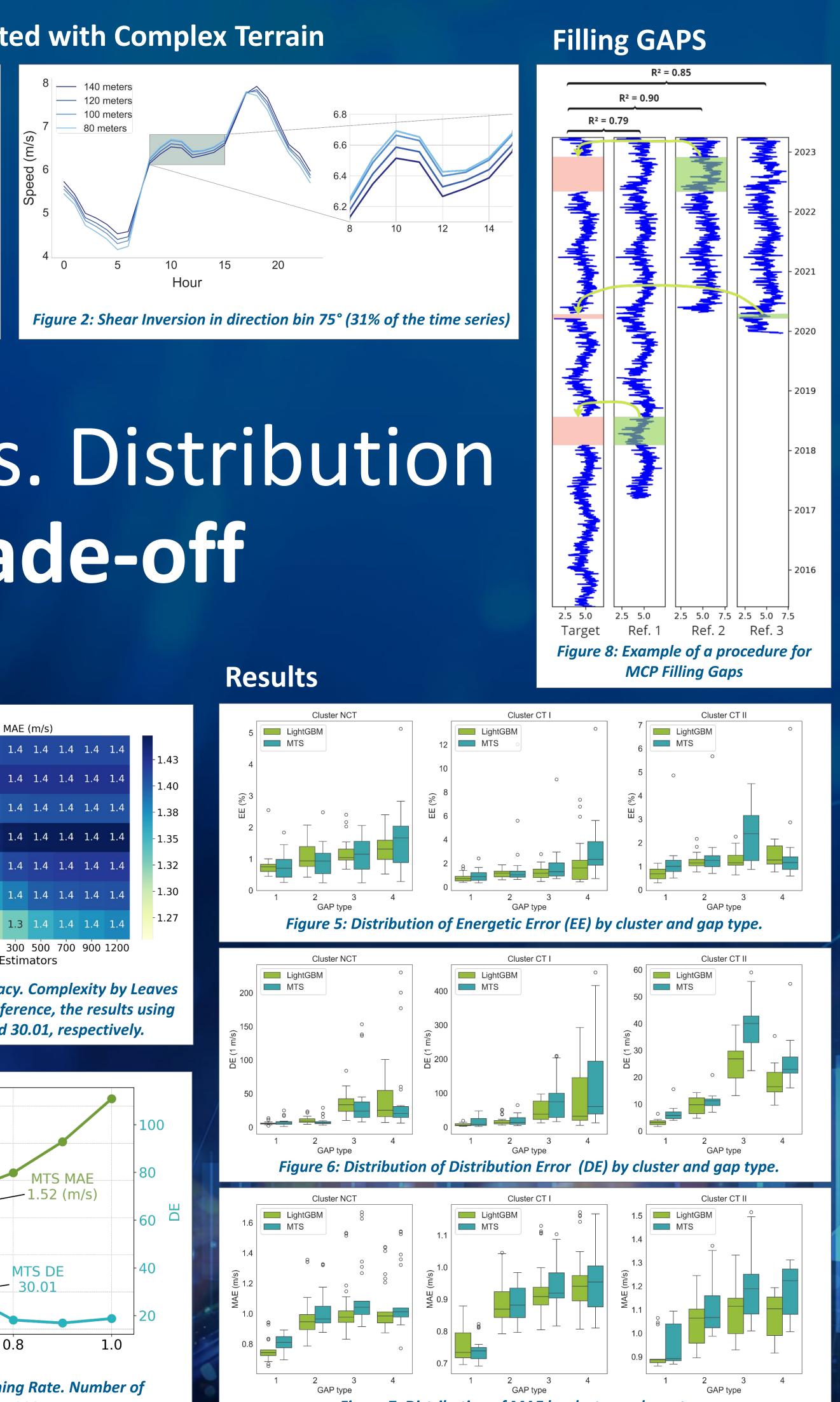
- LightGBM achieved better results in time series affected by complex terrain.
- LightGBM delivered competitive results while maintaining a good trade-off between accuracy and distribution error.

Discussion

• The fact that MTS performed better in Non-Complex Terrain may indicate that the LightGBM model could extract and use more relevant information in Complex Terrain.

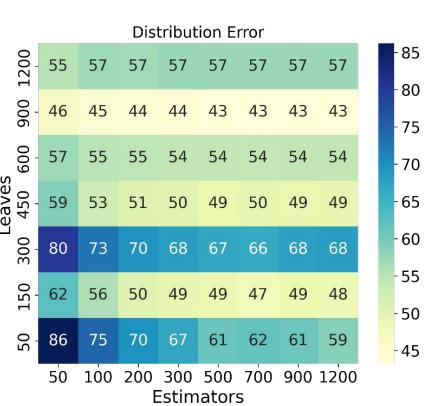
Patterns in Time Series Associated with Complex Terrain





Accuracy vs. Distribution Error: A Trade-off

Model Tuning



1200	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4		
006	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4		- :
600	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4		- 3
450	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4		- :
300	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4		- :
150	1.3	1.3	1.4	1.4	1.4	1.4	1.4	1.4		- :
50	1.3	1.3	1.3	1.3	1.4	1.4	1.4	1.4		- :
50 100 200 300 500 700 900 1200 Estimators										

Figure 3: Model complexity effect over the DE and accuracy. Complexity by Leaves and Estimators. The learning rate was set to 0.5. As a reference, the results using the MTS method for MAE and DE are 1.52 (m/s) and 30.01, respectively.

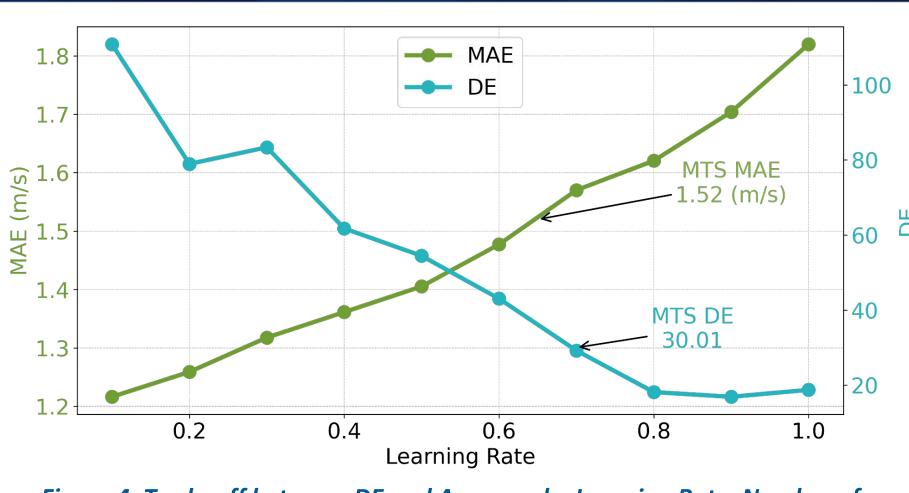
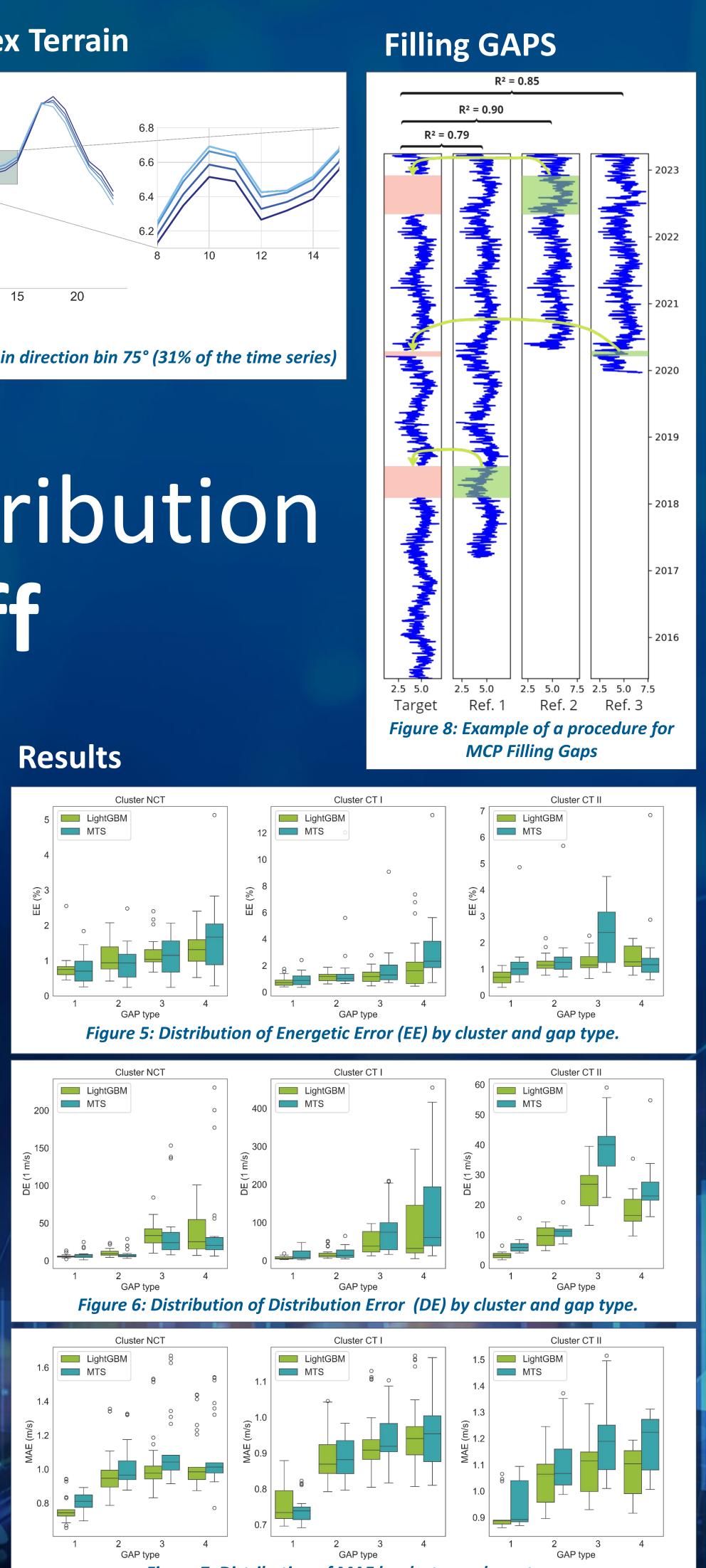
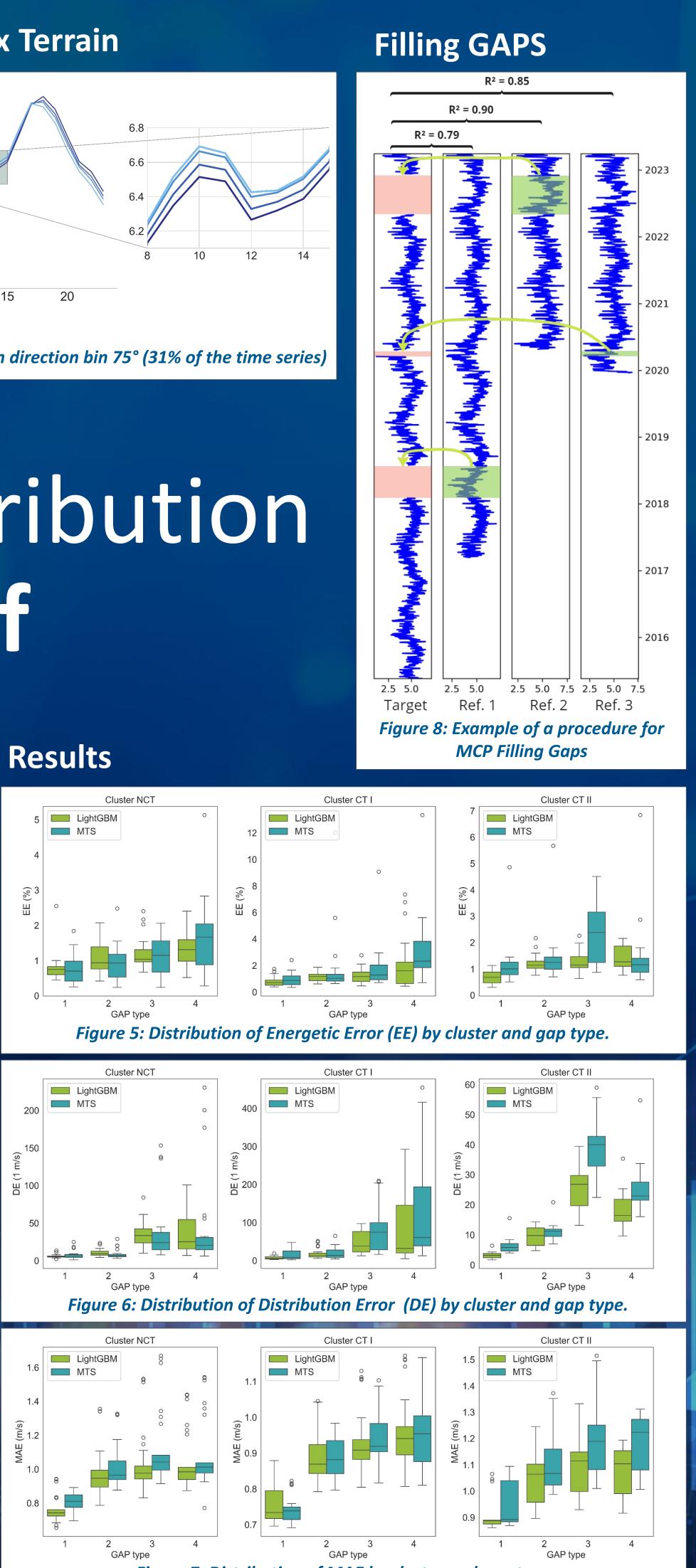
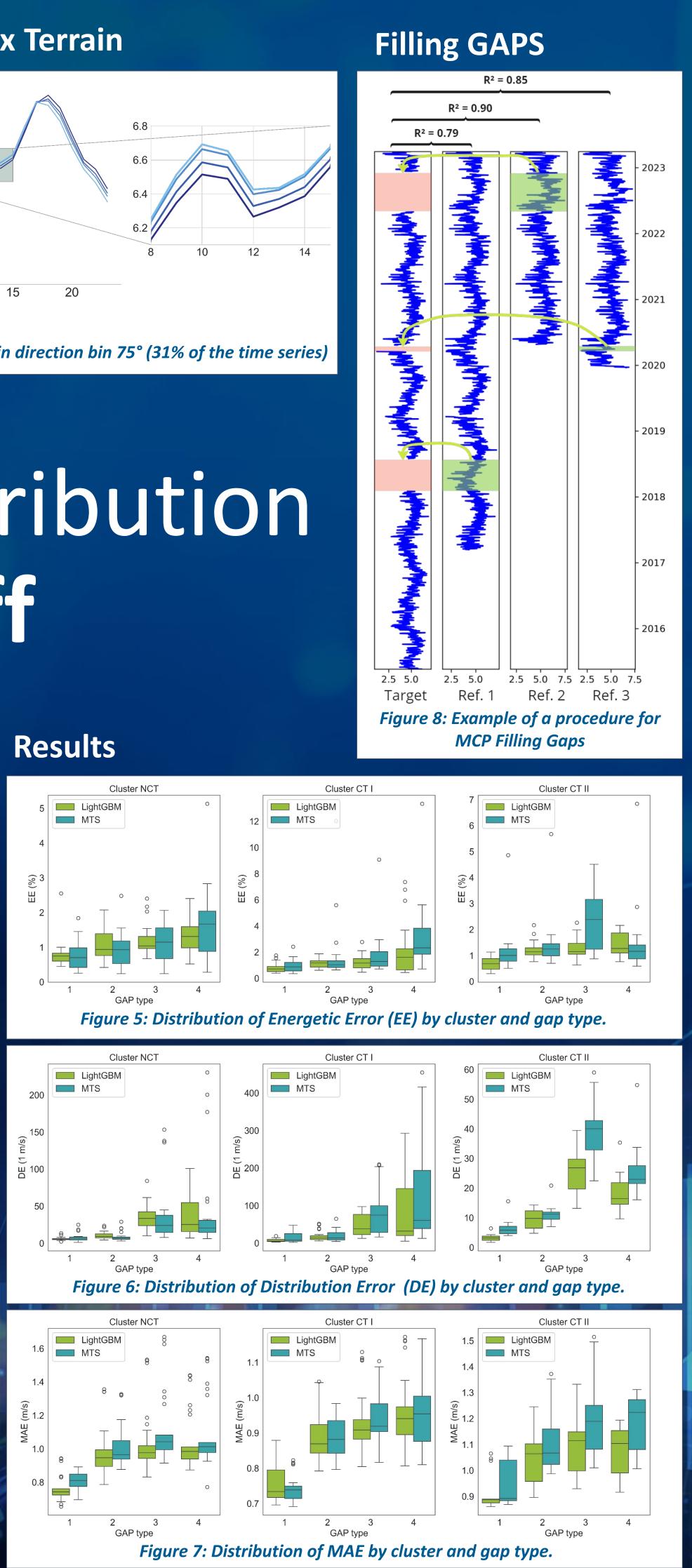


Figure 4: Trade-off between DE and Accuracy by Learning Rate. Number of *leaves = 600 and number of estimators = 300.*







Hyperparameters/Features

Hyperparameters

task : 'train' boosting_type : ['gbdt'] objective : 'regression' metric : ['l1' , 'l2'] learning_rate : 0.5 lambda_l1 : 0.0 lambda 12 : 0.0 min_child_samples : 1 feature fraction:1 bagging fraction: 1 verbose : 0 num_leaves : 600 n estimators : 300

Summarized Results

Table 1. Energetic Error Mean (Abs. %)

Cluster	GAP type	LightGBM	N
CT I	1	0.79	
CT I	2	1.15	
CT I	3	1.21	
CT I	4	1.98	
CT II	1	0.69	
CT II	2	1.24	
CT II	3	1.35	
CT II	4	1.42	
NCT	1	0.80	
NCT	2	1.05	
NCT	3	1.19	
NCT	4	1.31	

References

- 1. LightGBM's documentation. 2024. Available from:
- visualization solution. Available from https://store.ul-renewables.com/products/windographer
- Available from

Contact Info

L. JUREMA, Data Specialist, CDV Desenvolvimento lucas.cordeiro@casadosventos.com.br

Features

Hour of the Day **Reference Wind Speed:** ags: [1, 2, 3, 6, 18] leads: [1, 2, 3, 6, 18] Mean, Max, Min: [hour, day, week, Month] Percentiles (.9, .8, .7, .3, .2, .1) [hour, day, week, Month] **Skewness and Kurtosis:** [day, week, Month]

Table 2. Mean Absolute Error (m/s)

Cluster	GAP type	LightGBM	MTS
CT I	1	0.76	0.74
CT I	2	0.89	0.88
CT I	3	0.93	0.94
CT I	4	0.95	0.96
CT II	1	0.92	0.95
CT II	2	1.05	1.12
CT II	3	1.10	1.22
CT II	4	1.07	1.18
NCT	1	0.76	0.81
NCT	2	0.99	1.02
NCT	3	1.04	1.12
NCT	4	1.05	1.09

https://lightgbm.readthedocs.io/en/latest/index.html

UL SOLUTIONS. Windographer: Wind data analytics and

NREL Wind Turbine Power Curve Archive Repository. 2020.

https://github.com/NREL/turbine-models/tree/master.