

Validation of Model Analysis Offshore Winds Using Two Floating LiDARs in the New York Bight

¹School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY

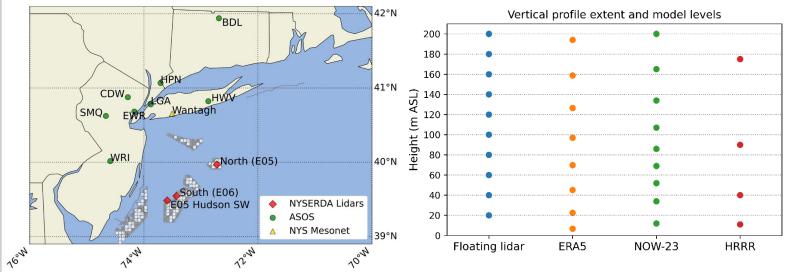
1. INTRODUCTION & OBJECTIVES

Growing offshore wind energy in the New York Bight requires accurate characterization of boundary layer vertical wind profile over various timescales and under warm season low-level jets (LLJs).

Challenges in Offshore Wind Prediction and Mapping

- Lack of long-term, multi-level meteorological observations offshore of the U.S. East Coast \rightarrow Usage of NWP model reanalysis and forecasts.
- NWP models can have significant limitations in accurately representing the observed marine ABL vertical wind profile.

Utilizing two NYSERDA floating LiDARs, we aim to address:

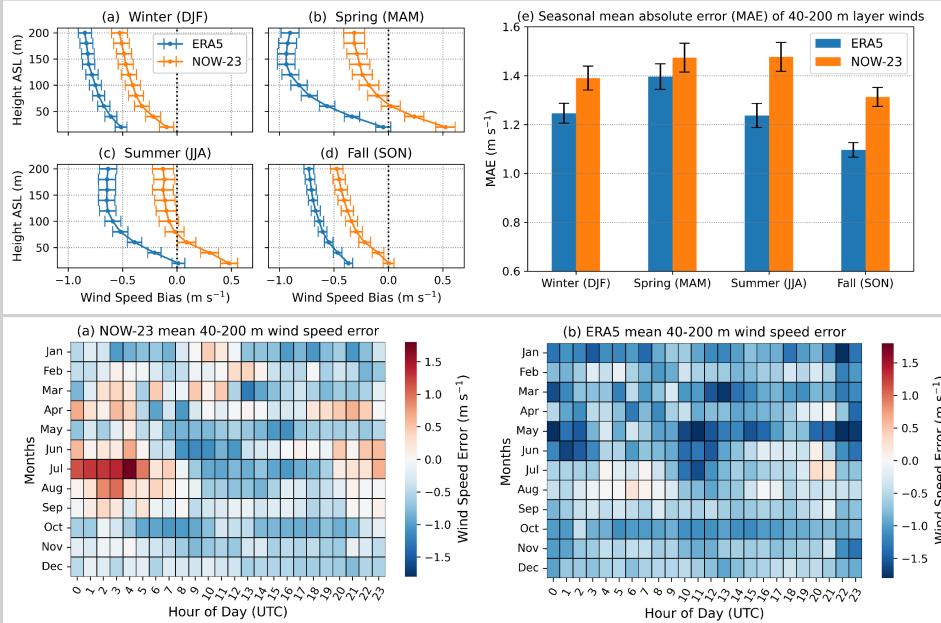

- How well do various NWP model analyses depict the marine 1. ABL wind speed resource by season, month, hour of day, and under warm season LLJs?
- Do NWP model analyses accurately detect and depict 2. observed warm season LLJ characteristics? Is depiction of environmental conditions in model analyses influence warm season LLJ performance?

2. DATA & METHODS

Global and Mesoscale Model Analyses:

- ECMWF Reanalysis version 5 (ERA5)
- 2. National Renewable Energy Laboratory **NOW-23** model analysis
 - a. WRF v. 4.2.1 model initialized and forced at the boundaries with ERA5 on a 2-km nested grid.
- High-Resolution Rapid-Refresh (**HRRR**) analysis (F00) hours

Study Period: 4 September 2019 – 1 December 2022



Warm Season LLJ Detection Methods:

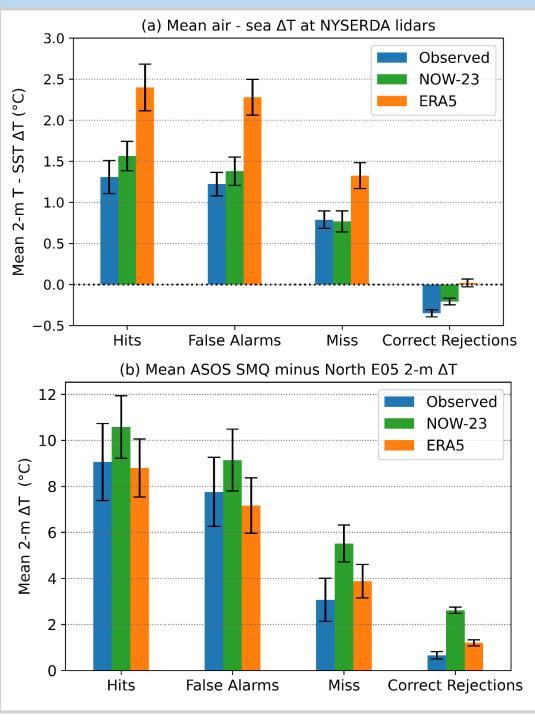
- 3 different types of algorithms slightly modified from their original usage were used to detect LLJ wind speed profiles
- If **2** or more of the algorithms detected a LLJ on a given day, that day was counted as an event... 441 hours or 121 LLJ days were detected.

Model Analysis LLJ Forecasting Skill

- HRRR analysis: Exhibited a LLJ POD of 9.0%.

Table 1. NREL NOW-23 LLJ Forecast Skill

Critical Success Index (CSI)	20%
Frequency Bias	45%
Probability of Detection	25%
(POD)	
False Alarm Ratio (FAR)	45%


Christopher Fragano^{1,2} and Brian A. Colle¹

²WRI Energy, Glens Falls, NY

3. SEASONAL, MONTHLY, & DIURNAL VALIDATION: ERA5 & NOW-23

Fig. 2: (a-d) Vertical profile of the seasonal wind speed bias from NOW-23 and ERA5 over 2019-2020 period. (e) Seasonal 40-200 m mean absolute wind speed errors (MAEs) bar plots from NOW-23 and ERA5.

Fig. 3: Monthly and hourly mean 40-200 m layer wind speed error from (a) NOW-23 and (b) ERA5.

4. WARM SEASON LOW-LEVEL JETS (LLJs)

ω -1 +

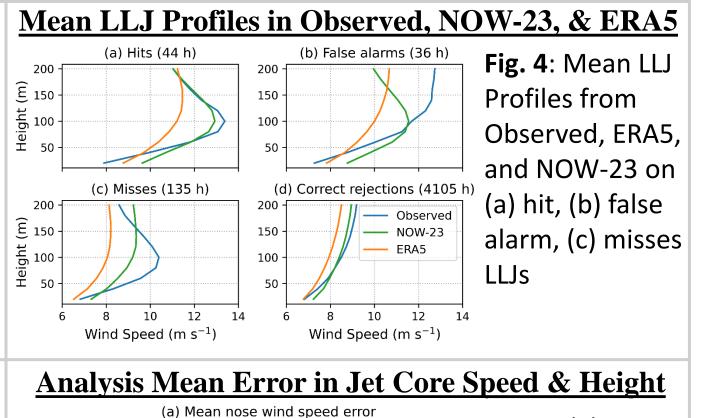
Ĕ _2 -

Jo -3 -

G 0.2 -

ERA5

140 120 80 60 40 20


NOW-23

(b) Nose height error

Error (m)

ERA5: 0 LLJ events in the lowest 200 m [Poorest skill]

- [accuracy]
- [i.e., underprediction]

Fig. 6: (a) Mean nose wind speed error of analyses; (b) HRRR Model analysis ERA5 jet nose height NOW-23 HRRR error frequency distributions

- 1300 UTC.

- stable conditions.

5. WARM SEASON LLJ ENVIRONMENTAL CONDITIONS

Fig. 7: (a) Mean airsea temperature difference at floating lidars, and (b) mean land-sea 2-m air temperature difference between ASOS SMQ (Somerset, NJ) and North E05 lidar from observed, NOW-23, and ERA5 on NOW-23 hit, false alarm, and miss LLJs

DISCUSSION & CONCLUSIONS

• During Spring and Summer (i.e., warm season) months is when model analysis **wind speed profile performance** more **strongly** deteriorates... Varies per model analysis.

ERA5 and NOW-23 both struggle in accurately depicting wind speeds in the warm season from ~ 2000 – 0600 UTC and 1000 –

• ERA5 underestimates by 1.3 – 1.8 m s⁻¹ in May-June. NOW-23 overestimates by 0.5 – 1.8 m s⁻¹ in June-August

All model analyses underestimate warm season LLJ frequency occurrence and exhibit poor 1:1 correspondence.

Best performing model analysis, in terms of LLJ detection and depiction, is NOW-23, followed next by the HRRR.

• ERA5: Worst performing in terms of LLJ detection and depiction of structural features \rightarrow Misrepresentation of turbulence during

• Significantly larger observed air-sea ΔT and land-sea ΔT are associated with NOW-23 LLJ detection.