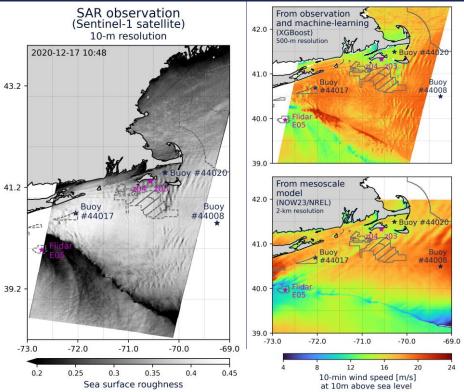

Increasing accuracy of offshore wind resource assessment with highresolution satellite imagery in the US Fast Coast M. Cathelain, H. Berger, R. Ramos


Introduction

Accurate offshore wind resource assessment is challenging due to scarcity of measurements, specially at hub height. The unique coverage, representativeness, and resolution of Synthetic-Aperture Radar (SAR) observations bring great benefits such as identifying **spatial heterogeneities** in wind fields in **coastal /offshore** regions (characterization of wind conditions), hence helping in early screening of development zones and designing lidar measurement campaigns.

Method

- 1. Derivation of surface wind fields from SAR utilizing our expertise as official provider for the European Space Agency.
- 2. Vertical extrapolation of those fields up 300m with machine-learning to algorithms based on supplementary in situ data
- 3. Incorporation of large training dataset with 88 US NDBC buovs and 12 offshore lidar buovs in North Sea.

OFFSHORE

WINDPOWER

Validation with over 28 lidars in US 4 (East and West coasts), China, Denmark, Germany, the Netherlands. Belgium. and France.

Results

- Finer resolution of flow wind SAR patterns obtained with observations compared to mesoscale model that lacks precision due to various assumptions/approximations.
- Significant error reduction: •
 - Mesoscale models: 4% error
 - SAR-derived method: 2% error
- Impact on the gross annual energy production: 4%.
- Method can be applied worldwide with no need for in situ observations thanks to satellite coverage.

Discussion

Wake effects of single turbines or large clusters can be seen on SAR imagery.

References

SARWind in

De Montera et al. 2022 Wind Energ. Sci. 7 1441-53 Cathelain et al. 2023 J. Phys.: Conf. Ser. 2505 012027 Contact Info Marie Cathelain. Ph.D., OW Scientist mcathelain@groupcls.com

