# HLA TISSUE TYPING AND HISTOCOMPATIBILITY IN SUPPORTING THE AUSTRALIAN UTERUS TRANSPLANT PROGRAM

<sup>1</sup>Keerthi Thamotharampillai, <sup>2</sup>Brigitte Gerstl, <sup>2</sup>Rebecca Deans

<sup>1</sup>Transplantation and Immunogenetics Services, Australian Red Cross Lifebloood, NSW, Australia <sup>2</sup>Department of Gynaecology, Royal Hospital for Women, NSW, Sydney, Australia



# Introduction

Women who experience uterine factor infertility (UFI) are unable to experience gestational parenthood, a condition which affects 3-5% of the population. Uterus transplantation provides fertility options for women to experience gestation, childbirth, and biological parenthood. The first uterus transplantation and live birth was reported in Sweden in 2014<sup>1</sup>. Australia has performed its first uterus transplant in January 2023 at Royal Hospital for Women, Sydney<sup>2</sup>. This has resulted in a live birth in December 2023. The second transplant was performed in March 2023, and resulted in a live birth in March 2024. We report the role of Australian Red Cross Lifeblood (ARCL), Transplantation and Immunogenetics laboratory in pre- and post-transplant assessment of donor-recipient pairs for these uterus transplants. The first recipient in Australia to receive a uterus transplant was a 30-year-old female, who had a previous successful pregnancy and subsequent emergency hysterectomy due to complications. She has received multiple blood transfusions during this procedure. Her mother has served as a related donor. The second recipient, a 36-year-old female with Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome and her family friend, who served as the donor.

#### **Baby Henry**



**Baby Rose** 



#### **Donor/Recipient pair 1**

#### **Donor/Recipient pair 2**







### **Post-transplant DSA monitoring**

#### **Recipient 1 DSA tracking**



### DSA to DPA1\*02, DQA1\*02, DQB1\*02 and DRB1\*07 were detected from four months post-transplant and have

## Methods

ARCL has conducted HLA typing, HLA antibody screening and flow crossmatching in both cases according to our living directed donation transplant work up protocol. HLA typing was performed on recipient and donor using AllType<sup>™</sup> FASTPlex<sup>™</sup> NGS (One Lambda<sup>™</sup>). HLA antibody testing was performed on the recipient's serum using LABScreen<sup>™</sup> Single Antigen (One Lambda<sup>TM</sup>) and flow cytometric crossmatches (Halifaster protocol) were performed using recipient's serum against donor's T and B lymphocytes<sup>3</sup>.

## Results

|             | DSA present | T cell flow crossmatch | B cell flow crossmatch |
|-------------|-------------|------------------------|------------------------|
| Recipient 1 | Νο          | Negative               | Negative               |

peaked in July 2024. This antibody response could be the result of a memory response to prior HLA allo-sensitiation during her previous pregnancy.

• Recipient 2 is DSA free in her two post-transplant samples, one month and two months post-transplant respectively, and we are yet to receive a sample in 2024 for DSA testing.

# Conclusions

HLA tissue typing and antibody screening is important in assessing transplant compatibility and monitoring for posttransplant DSA to prevent potential antibody mediated rejection in uterus transplant recipients. This is attributed to three successful uterus transplants and two live births in Australia since 2023. Further recipient-donor pairs have been assessed for histocompatibility in preparation for transplant. ARCL had played a crucial role in deciding compatible recipient-donor pairs for a successful transplant outcome. There are also plans to utilise non-directed donors through access to deceased donors via the national transplant waiting list (TWL) in the future<sup>4</sup>. ARCL will maintain these TWL recipients ready for matching and will perform virtual crossmatching and histocompatibility assessment against potential deceased donors for a successful transplant outcome.

| Recipient 2 | Νο | Negative | Negative |
|-------------|----|----------|----------|
|             |    |          |          |

#### HLA mismatches between donor/recipient pairs

| Donor 1 HLA typing profile |                  |                  |                  |                  |                  |                  |                  |      |                  | Recipient 1 HLA typing profile |       |                |                  |                  |                  |                  |                  |                  |                  |        |       |
|----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------|------------------|--------------------------------|-------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|-------|
| А                          | В                | с                | DRB1             | DQB1             | DQA1             | DPB1             | DPA1             | DRB3 | DRB4             | DRB5                           | P     | A              | В                | С                | DRB1             | DQB1             | DQA1             | DPB1             | DPA1             | DRB3   | DRB4  |
| *02:01<br>*29:02           | *44:02<br>*44:03 | *05:01<br>*16:01 | *04:01<br>*07:01 | *02:02<br>*03:01 | *02:01<br>*03:03 | *04:01<br>*11:01 | *01:03<br>*02:01 |      | *01:01<br>*01:03 |                                | *     | 02:01<br>03:01 | *40:02<br>*44:02 | *03:04<br>*05:01 | *04:01<br>*14:02 | *03:01<br>*03:01 | *03:03<br>*05:03 | *04:01<br>*04:01 | *01:03<br>*01:03 | *01:01 | *01:0 |
| Allelic asses              | ssment           |                  |                  |                  |                  |                  |                  |      |                  |                                | Fals  | t land         |                  |                  |                  |                  |                  |                  |                  |        |       |
| Allelic Dir                | B                | с                | DRB1             | DQB1             | DQA1             | DPB1             | DPA1             | DRB3 | DRB4             | DRB5                           | Class | s l            |                  |                  | Cla              | ass II           |                  |                  | Total            |        |       |
| -<br>*29:02                | -<br>*44:03      | -<br>*16:01      | -<br>*07:01      | *02:02<br>-      | *02:01<br>-      | -<br>*11:01      | -<br>*02:01      |      | *01:01<br>-      |                                | -     |                |                  |                  | -                |                  |                  |                  | -                |        |       |

| )ono             | or 2 HL          | .A typ           | ing pr           | ofile            |                  | Recipient 2 HLA typing profile |                  |                  |      |      |            |              |                  |                  |                  |                  |                  |                  |                  |      |
|------------------|------------------|------------------|------------------|------------------|------------------|--------------------------------|------------------|------------------|------|------|------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------|
| А                | В                | с                | DRB1             | DQB1             | DQA1             | DPB1                           | DPA1             | DRB3             | DRB4 | DRB5 | А          |              | В                | с                | DRB1             | DQB1             | DQA1             | DPB1             | DPA1             | DR   |
| *03:01<br>*24:03 | *27:05<br>*38:01 | *07:02<br>*12:03 | *03:01<br>*13:01 | *02:01<br>*06:03 | *01:03<br>*05:01 | *03:01<br>*04:01               | *01:03<br>*01:03 | *01:01<br>*01:01 |      |      | *02<br>*02 | 2:01<br>2:01 | *15:01<br>*52:01 | *03:03<br>*12:02 | *01:01<br>*14:04 | *05:01<br>*05:03 | *01:01<br>*01:04 | *04:01<br>*04:01 | *01:03<br>*01:03 | *02: |
| Allelic asse     | ssment           |                  |                  |                  |                  |                                |                  |                  |      |      |            |              |                  |                  |                  |                  |                  |                  |                  |      |
| Allelic Dif      | ferences         |                  |                  |                  |                  |                                |                  |                  |      |      | Eplet      | load         |                  |                  |                  |                  |                  |                  |                  |      |
| А                | В                | С                | DRB1             | DQB1             | DQA1             | DPB1                           | DPA1             | DRB3             | DRB4 | DRB5 | Class I    | I            |                  |                  | Cla              | ss II            |                  |                  | Total            |      |
| *03:01<br>*24:03 | *27:05<br>*38:01 | *07:02<br>*12:03 | *03:01<br>*13:01 | *02:01<br>*06:03 | *01:03<br>*05:01 | *03:01<br>-                    | -                | *01:01<br>*01:01 |      |      | -          |              |                  |                  | -                |                  |                  |                  | -                |      |

## References

1. Brännström m M et al. Livebirth after uterus transplantation. Lancet 2015; 385(9968): 607–616

2. The first Australian uterus transplantation procedure: A result of a long-term Australian-Swedish research collaboration. Deans et al, Aust N Z J Obstet Gynaecol. 2023; 63(3): 418-424

3. Rapid optimized flow cytometric crossmatch (FCXM) assays: The Halifax and Halifaster protocols. Liwski et al, Hum Immunol. 2018; 79(1): 28-38

4. A study protocol for live and deceased donor uterus transplantation as a treatment for women with uterine factor infertility. Pittman et al, Aust N Z J Obstet Gynaecol. 2024; 64(4): 399-406