
Enhancing Reproducibility in Immunogenetics:
Leveraging Containerization Technology for Bioinformatics Workflows

Rayo Suseno, Kristen J. Wade, Wesley M. Marin, Jill A. Hollenbach
University of California, San Francisco Department of Neurology

Introduction
Bioinformatics is experiencing a crisis of reproducibility,
which inhibits research progress and calls into question
scientific findings derived from unreproducible
computational methods. Multiple evaluations on the
reproducibility of bioinformatics workflows showcase the
crisis we are experiencing, as only about 14% of them
successfully ran to completion. Leveraging containerization
technology has emerged as a promising solution to address
these issues and streamline the deployment of
bioinformatics workflows.

The field of immunogenetics research is especially in need
of such workflows, as the high levels of genomic
complexity found within immune loci often require the
development of specialized and unique tools. For instance,
our team published a pipeline called Pushing
Immunogenetics to the Next Generation (PING), designed
to genotype the KIR genes from short read data. While
PING has garnered considerable attention among
immunogenetic researchers, investigators encountered
numerous challenges in configuring the necessary
software environment for PING.

To that end, we aim to share our attempts on increasing the
accessibility and reproducibility of immunogenetics
pipeline. Using a container platform called Singularity, we
showcase two pivotal pipelines that provides reliable high
throughput analysis of large datasets not otherwise
accessible with currently available tools: PING and
MHConstructor.

Issue
One challenge that we encountered while developing
MHConstructor is the need to run the pipeline in multiple
Python versions. Specifically, Python 2.7 and Python 3.5
were needed in different steps of the pipeline due to its
reliance on two bioinformatics tools: AMOS and RagTag.
To address this, we turned to conda, a virtual environment
manager. By building two different conda environments
inside the container, we can seamlessly transition from
one environment to the other, allowing us to use both
AMOS and RagTag accordingly in our pipeline.

Containers Benefits
1. Ease-of-use for users. Rather than installing their

own dependencies, containers ensure that every
component needed for the pipeline to run is taken care
of. This is especially helpful for users that may not
necessarily have a computational background.

2. No reprogramming. An existing pipeline can easily
be containerized without having to rewrite the source
code. Containers would simply run the same analysis
using packages that adhere in the container, instead of
the ones that are installed locally.

3. HPC-friendly. As opposed to a more popular
platform like Docker, Singularity does not mandate its
user to run the container using admin privileges. This
feature offers flexibility when it comes to working with
HPCs that are typically used in research universities.

Methods
Building a container starts with identifying packages and system requirements that are needed to run the pipeline. We started by
noting down which version of our packages have been used during development. We also took note of system libraries that are
needed to install different bioinformatics pipeline. For instance, libtbb-dev is mandatory for Bowtie2 to run. Therefore, the
container is going to need libtbb-dev before it starts installing Bowtie2.

All these information is then written down in a Singularity definition file, which is used to build the container. Building the
container is a one-line command in Singularity which creates a single-image file (SIF). Once built, both the input to the pipeline
and SIF are used as arguments to execute your pipeline through the container from start to finish.

Figure 3
Building a container starts from a definition file that prescribes the necessary packages. The recipe then can be built to create an image SIF file which is used to

run the pipeline alongside with the input files to produce the desired output.

14%

86%

Reproducible Irreproducible

Figure 1
Previous attempts to assess the reproducibility of various bioinformatics

workflows. Three studies performed independent assessment which found the
following reproducible rates: 11%, 6%, and 26%, while the remaining

workflows were irreproducible.

Singularity container

Conda environment 1

Python 2.7
AMOS

Conda environment 2

Python 3.5
RagTag

Containerized Pipelines
PING (Pushing Immunogenetics to the Next
Generation) is a genotyping tool for the killer-
cell immunoglobulin-like receptor (KIR) region
from short-read paired-end whole genome or
exome datasets. It is designed to detect all
known and any novel KIR SNP variants.

MHConstructor is a short read de novo
assembler for the MHC region, the most poly-
morphic region in the human genome.
MHConstructor takes in short-read targeted,
in-house whole genome, or 1000 Genome
sequencing data to create an assembly that
can be further used for association studies.

.def
Build the container

Figure 4
A graphical interpretation on how multiple conda environments can be stored

within a Singularity container.

bowtie2-2.4.2

samtools-1.7

bcftools-1.7

bowtie2-2.4.2
samtools-1.7
bcftools-1.7

bowtie2-2.4.2
samtools-1.7
bcftools-1.7

bowtie2-2.4.2
samtools-1.7
bcftools-1.7

Developer

User

User

User

Figure 2
Container is a collection of packages and its dependencies that is

necessary for a pipeline or workflow to run in any environment. The process
of containerization ensure that the developer and user are using the same

version of tools to promote reproducibility.

