

Confounding variables such as previous transplants, gender, ethnicity, and primary disease complicate the diagnostic validity of single-antigen bead-based non-HLA antibody assays

Raja Rajalingam¹, Stalinraja Maruthamuthu¹, Owen Buenaventura¹, Bryan Ray².

¹ University of California San Francisco, San Francisco, CA; ² Werfen, Waukesha, WI; ³ Immunogenetics and Transplantation Laboratory (ITL), San Francisco, CA

Purpose

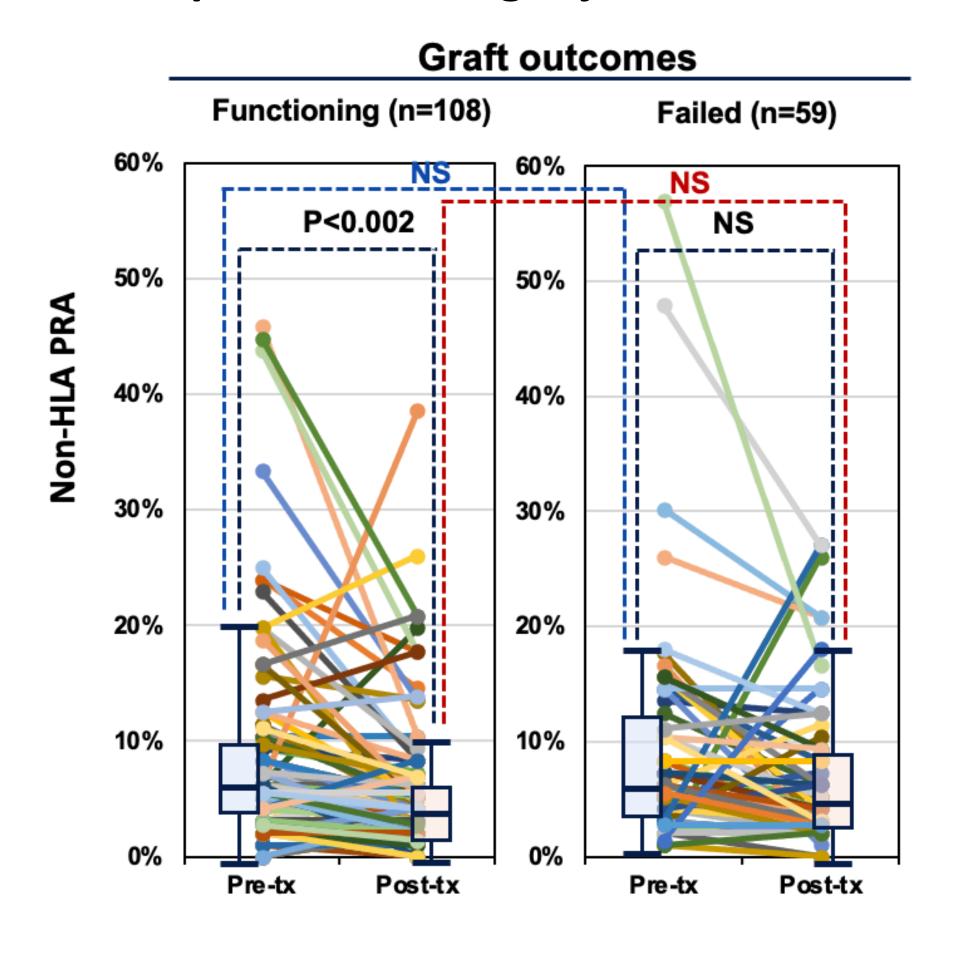
- Increasing evidence suggests a correlation between non-HLA antibodies and rejection of kidney transplants.
- Available non-HLA antibody assays detect one or limited non-HLA antibody specificities and are developed in research laboratories.
- We utilized a panel of 82 unique non-HLA conjugated Luminex bead assay (Werfen/Immucor) to determine non-HLA antibodies in kidney transplant outcomes.

Methods

- Based on pre-transplant HLA-DSA, de novo HLA-DSA, and kidney transplant outcomes, we have included 167 patients who received a deceased donor kidney transplant at UCSF from 2013 to 2018.
- All recipients with functioning grafts were highly sensitized with a cPRA of ≥80%.
- Sera collected within 3 months before kidney transplant and 6 months post-transplant were tested for non-HLA antibody using Luminex assay.

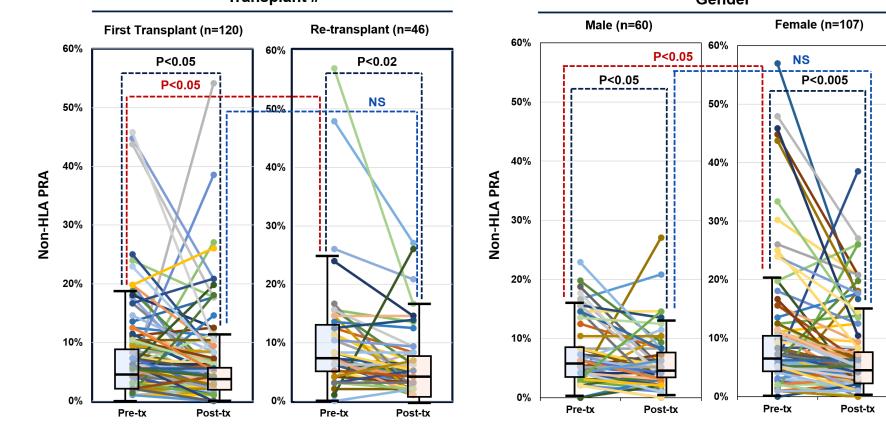
Study cohort design Recipients of deceased donor kidney transplants performed at UCSF (Jan 2013-Dec 2018)

							Serui	m samples	tested
Pre-tx DSA	C	Graft outcome	dnDSA		Pre-tx CPRA >	80%	Pre-tx	at ABMR	Post-tx
	1	Functioning (n=906)	Neg (n=810)	→	Group-i (n=	26)	X		X
Negative (n=956)	4		Pos (n=96)	→	Group-2 (n=	28)	X		X
		Failed	Neg (n=16)	Gr	oup-3 (n=16)		X	X	
	7	(n=50)	Pos (n=29)	Gr	oup-4 (n=28)		X	X	
	ſ	Failed (n=18)	Neg (n=5)	Gr	oup-5 (n=3)		X	X	
Positive	/		Pos (n=12)	Gr	oup-6 (n=12)		X	X	
(n=196)		Functioning (n=178)	Neg (n=98)	- [Group-7 (n=	26)	X		X
			Pos (n=80)	→ [Group-8 (n=	28)	X		X

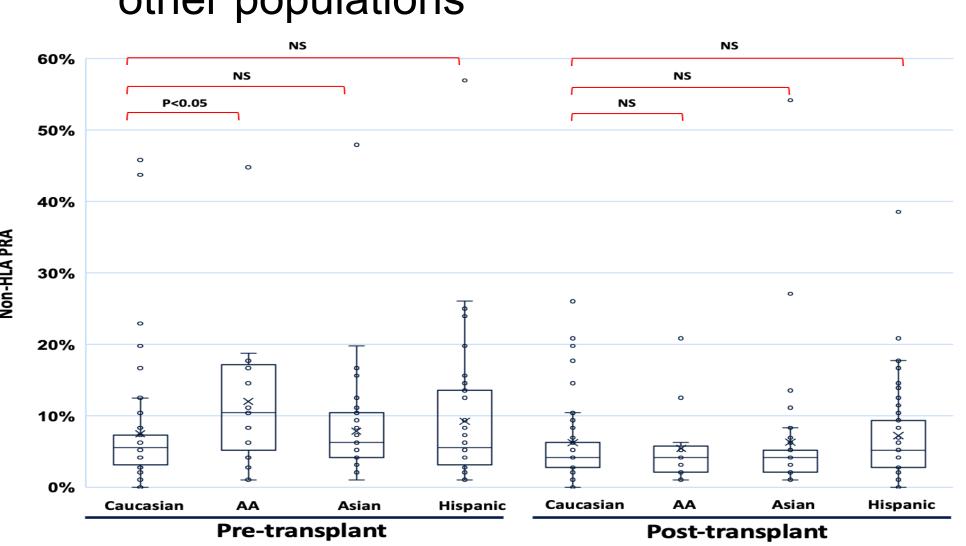

Immuco

cor No	on-HLA Panel Composit	ion	ſ	N=167	
	Gene Name		Gene Name	Antigen	Gene Name
	Actin	FAS	Fas cell surface death receptor	P2RY11	purinergic receptor P2Y, G- protein coupled, 11
	Agrin	FN1	fibronectin 1	PECR	Peroxisomal trans-2-enoyl- CoA Reductase
APOL2	apolipoprotein L, 2	FLRT2	Leucine-rich repeat transmembrane protein FLRT2	PLA2R1	phospholipase A2 receptor 1, 180kDa
ARHGDIB	Rho GDP-dissociation inhibitor 2	GAPDH	Glyceraldehyde- 3-phosphate dehydrogenase	PRKCH	Protein kinase C, eta
ATP5B	ATP synthase, H+ transporting, mitochondrial F1 complex	GDNF	glial cell derived neurotrophic factor	PRKCZ	protein kinase C, zeta
CCP	Cyclic citrullinated peptide	GSTT1	Glutathione S- Transferase theta-1	PTPRO	Receptor-type Tyrosine-protein Phosphatase U
CD40	CD40 molecule, TNF receptor superfamily member 5	HARS	Jo-1	ROR1	Receptor Tyrosine KinaseLike Orphan Receptor 1
CGB5	chorionic gonadotropin, beta polypeptide 5	HSPB1	Heat shock protein beta-1	SHC3	SHC-Transforming Protein 3
Collagen I	Collagen I	ICAM1	Intracellular Adhesion Molecule 1	SNRPB2	small nuclear ribonucleoprotei n polypeptide B
Collagen II	Collagen II	IFNG	Interferon Gamma	SNRPN	Small Nuclear Ribonucleoprotein Polypeptide N (smith antigen core)
Collagen III	Collagen III	IL21	Interleukin 21	SSB	Sjogren syndrome antigen B (autoantigen La)
Collagen IV	Collagen IV	IL8	Interleukin 8, CXCL8	STAT6	Signal Transducer and Activator of Transcription 6, Interleukin-4 Induce
Collagen V	Collagen V	KRT18	Cytokeratin 18	Thyroglobulin	Thyroglobulin
Collagen VI	Collagen VI	KRT8	Cytokeratin 8	Transferrin	Transferrin
CSF2	Colony stimulating factor 2	LGALS3	Galectin 3	TUBA1B	tubulin, alpha 1b
CXCL11	chemokine (C-X- C motif) ligand 11	LGALS8	Galectin 8	TUBB	Tubulin
CXCL9	C-X-C Motif Chemokine 9	LMNA	Prelamin-A/C	Tubulin	Tubulin
DEXI	dexamethasoneinduced transcript	LPHN1	Latrophilin 1	VCL	Vinculin
EMCN	Endomucin	Myosin	Myosin	VEGFA	Vascular endothelial growth factor A
ENO1	Alpha-enolase	NCL	nucleolin	VIM	Vimentin

Results

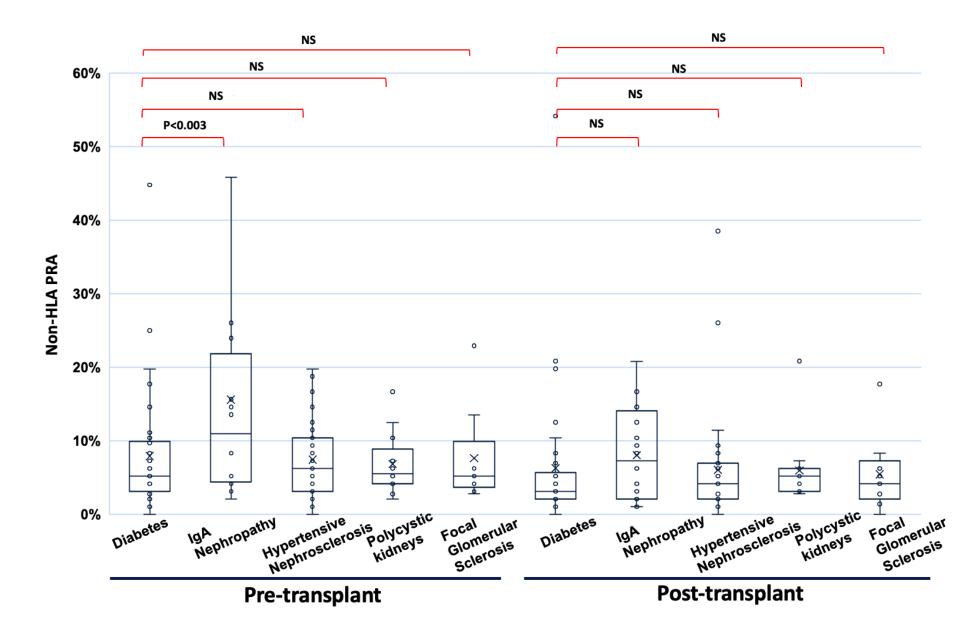

- Kidney transplant outcomes were not associated with either a specific or subset of non-HLA antibody.
- However, the non-HLA PRA values (calculated by the number of non-HLA beads positive divided by the number of non-HLA beads tested, multiplied by 100) remain unchanged in pre- and post-tx samples in recipients showing rejection (n=59).
- Non-HLA PRA values dropped significantly in post-transplant samples of those with functioning grafts (n=108) compared to pretransplant samples (p<0.002).

Non-HLA antibodies are persistent in recipients showing rejection



Results

- In cohort negative for both preformed and de novo HLA-DSA, those with graft failure maintained the non-HLA PRA same at pre-and post-transplant, while those with functioning graft dropped non-HLA PRA in post-transplant compared to pre-transplant (p<0.05).
- The pre-transplant non-HLA PRA are significantly elevated (p<0.05) in re-transplant recipients and female recipients compared to first-transplant and male recipients, respectively, indicating sensitization to allogenic tissues can trigger non-HLA antibody production.



African American patients exhibited higher pre-transplant non-HLA PRA compared to other populations

Results

Those with IgA nephropathy as an etiology of ESRD had higher non-HLA PRA pretransplant compared to other underlying conditions.

There was no correlation between non-HLA antibody or PRA and endothelial crossmatch.

Conclusion

- Non-HLA antibodies significantly decreased in those with functioning grafts but remained elevated in those with graft loss.
- Since several confounding variables (previous transplant, gender, ethnicity, and primary disease) contribute to the non-HLA antibody production, further systematic multicenter studies with multivariate analyses are warranted to determine the clinical validity of non-HLA antibody testing.