

Comparative analysis of serum pretreatment strategies to remove non-specific serum interference in HLA antibody assessment

Dharmendra Jain^{1,2}, Denise Hurst¹, Andre Cruz Delgadillo¹ and Eszter Lazar-Molnar^{1,2}

¹ Histocompatibility & Immunogenetics Laboratory, University of Utah Health and ²Department of Pathology, University of Utah School of Medicine

1. INTRODUCTION

Assessment of HLA antibodies occasionally encounter interference from high serum background levels, and non-specific binding, hindering precise HLA-specific reactivity evaluation in solid-phase bead assays. To mitigate this, various strategies are employed.^{1,2} We aim to compare the efficacy of Adsorb OUT (AO) and PreSorb[™] (PS) (One Lambda[™]), serum pre-treatment

3. RESULTS

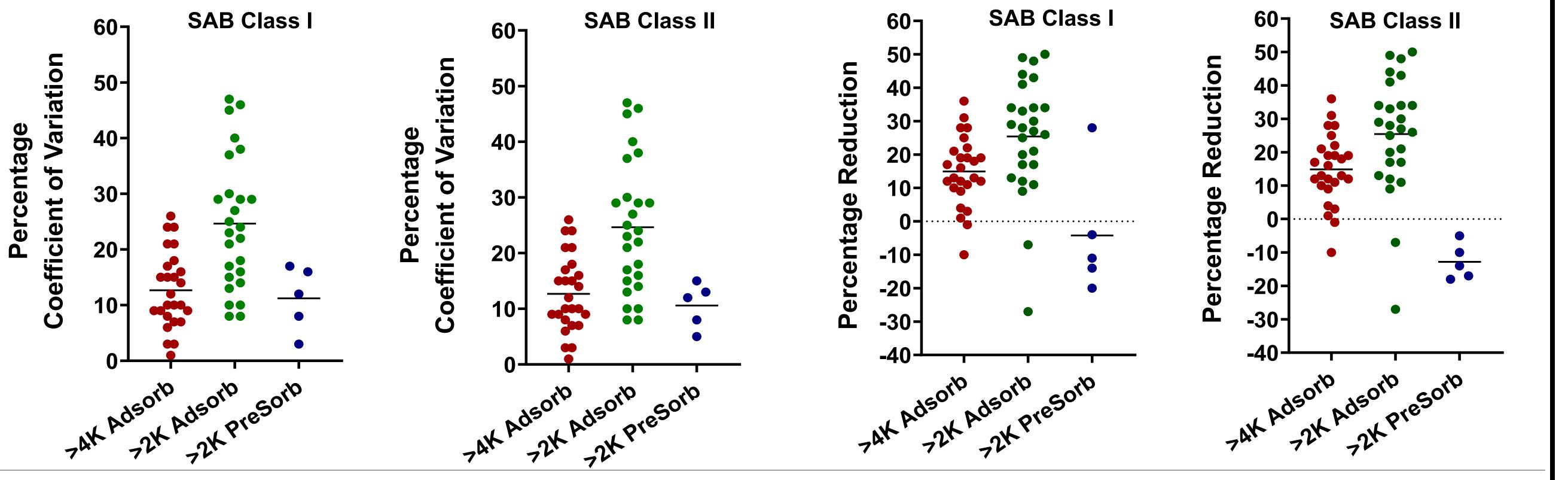

Pre-treatment with PS did not significantly affect the strength of the clinically relevant (MFI>2000) HLA antibodies. Pre-treatment with AO tends to reduce MFI. However, for HLA specificities with MFI >4000, the reduction remained within assay variability (%CV ≤ 20 ; %Change ≤ 20), with slightly higher impact on weaker antibodies (MFI 2000-4000; %CV ≤ 25 ; %Change $\leq 25\%$). Figure-1. The comparative analysis showed that only 14% of sera improved with both Adsorb OutTM (AO) and PreSorbTM (PS), while roughly half of the sera showed no improvement with either. Table 1. Analysis of serum samples exhibiting non-specific pan-HLA-DR reactivity showed that pan-DR reactivity was removed in all 3 samples (3/3) after PreSorbTM treatment. Table 2.

Figure-1 Differences in MFI of specific HLA Class I & II reactivities between untreated and AO/PS treated sera.

reagents, in mitigating non-specific serum interferences in the HLA single antigen bead (SAB) assay.

2. METHOD

Twenty-seven deidentified sera samples (22) HLA Class I, 23 HLA Class II) from 25 waitlisted transplant recipients were analyzed using a Single Antigen Bead (SAB) assay (One Lambda[™]). The set included 17 sera with high background, questionable reactivity, or unexpected crossmatch results, 3 with pan HLA DR reactivity, 5 with typical HLA reactivity (cPRA >50%), and 2 control sera. Sera were tested untreated and post AO and PS pre-treatment. percentage change, and coefficient of variation were calculated. An improvement in serum antibody reactivity was defined as a reduction of non-specific background (NC bead MFI and/or PC to NC ratio) to levels acceptable by the laboratory's SOP (NC<I,500 MFI and/or PC/NC ratio 10), elimination of auto-specificities, reduction in the number of questionable specificities, or a clearer determination of specificity following serum treatment. Additionally, to assess the impact of AO and PS on true HLA-specific antibody reactivity, sera demonstrating normal HLA-specific reactivity were analyzed using the SAB Class I and Class II assays, respectively.

*Data for AdsorbOUT™ were taken from samples run in different experiment.

Table-1 Sera with high background exhibited improvement following treatment with AO and/or PS treatment for both HLA Class I and Class antibody assays. FCXM, Flow Cytometric Crossmatch; NC, Negative Control.

Table I (a) Class I						
Reason for Testing	Improved with AO	Improved with PS	Improved with AO & PS	Not Improved with AO & PS	Improved with AO or PS	Total Samples
NC Background	3	4	2	6	5	11
Questionable reactivity	0	0	0	2	0	2
Unexpected FCXM results	0	1	0	0	1	1
Total (%)	3 (21)	5 (36)	2 (14)	8 (57)	6 (43)	14 (100)
Table 1 (b) Class II						
NC Background	4	3	2	5	5	10
Questionable reactivity	0	1	0	0	1	1
Unexpected FCXM results	0	1	0	0	1	1
Total (%)	4 (29)	5 (36)	2 (14)	5 (36)	7 (50)	12 (100

Table-2 Differences in MFI of HLA DR and Non-HLA DR reactivities between untreated and PS treated sera.

	HLA DR %CV	NON-HLA DR % CV	HLA DR %Chage	NON-HLA DR %Change
Sample-1	98	14	81	14
Sample-2	124	12	93	16
Sample-3	117	19	90	20
Overall Effect	113	15	88	17
*Data is an average of all HLA antiger	ns/beads			

CONCLUSIONS:

1. Serum pretreatment with PreSorb[™] did not impact specific HLA Class I and II antibody reactivities.

2. Neither Adsorb OUT nor PreSorb™ is superior in universally reducing non-specific reactivities, suggesting their complementary usage.

3. PreSorb[™] outperformed Adsorb OUT in select cases of non-specific reactivity and proves effective in removing pan DR reactivity.

REFERENCES: 1. Zerrouki A, et. al. Transpl Immunol. 2016;36:20-24. 2. McCaughan J, Hepatobiliary Surg Nutr. 2019;8(1):37-52.