

Charlson Comorbidity Index and Length of Hospitalization in Catatonia Subtypes

Liliana Patarroyo-Rodriguez, M.D.,M.S.¹, Laura Duque, M.D.^{1,3,4}, Vanessa Pazdernik, M.S.². Balwinder Singh, M.D.,M.S.¹ ¹Department of Psychiatry and Psychology, Mayo Clinic, Rochester MN. ²Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN. ³Department of Psychiatry, Massachusetts General Hospital, Boston. MA. ⁴Harvard Medical School, Boston. MA.

BACKGROUND

- Catatonia is a significant epidemiological and clinical concern, manifesting across both medical and psychiatric conditions.
- It represents one of the most severe psychiatric presentations often leading to significant morbidity and mortality.
- The influence of medical comorbidities on catatonia outcomes remains uncertain.
- Catatonia can be classified into two distinct categories: catatonia associated with psychiatric diagnoses (C-APD) and catatonia due to another medical condition (C-AMC).
- The Charlson Comorbidity Index (CCI) assess 19 comorbidities and has been used to assess prognosis, clinical outcomes, and health risks.

OBJECTIVES

To elucidate disparities in medical comorbidities as assessed by the CCI, between catatonia subtypes (C-APD vs C-AMC). To investigate how these medical comorbidities impact the length of hospitalization (LOH) for the catatonia subtypes.

METHODS

- Retrospective cohort (2001-2021) of adult patients hospitalized at Mayo Clinic in Rochester, MN.
- Individuals diagnosed with Catatonia based on International Classification of Diseases (ICD) codes.
- Data extraction from electronic medical records.
- IRB approved. Only patients with consent to use medical records for research were included.
 ©2024 Mayo Foundation for Medical Education and Research

STATISTICAL ANALYSIS

- Means and Standard Deviations (SD) for continuous variables.
- Frequencies and percentages for categorical variables.
- T-test for continuous variables and Fisher's exact test for categorical variables.
- Logistic regression model to adjust for confounders.

RESULTS

Characteristics	C-APD (N=190)	C-AMC (N=59)	p value
Age			
Mean (SD)	47.9 (20.9)	49.3 (18.5)	
Gender			
Female	103 (54.2%)	35 (59.3%)	
Male	87 (45.8%)	24 (40.7%)	
Race			
White	160 (84.2%)	54 (91.5%)	
Black or African American	19 (10.0%)	3 (5.1%)	
Asian	9 (4.7%)	2 (3.4%)	
Other	2 (1.1%)	0 (0.0%)	
History of Stroke	27.5% (5)	13.8% (8)	0.003
Bush-Francis Catatonia Rating Scale - severity score			
Mean (SD)	11.2 (5.5)	13.7 (5.6)	0.002
Length of hospital stay			0.02
Mean (SD)	25.7 (24.2)	35.3 (41.0)	
Mean CCI score	2.5	2.9	0.34
Mild CCI	56.1% (105)	53.4% (31)	
ModerateCCI	19.8% (37)	25.9% (15)	
Severe CCI	24.1% (45)	20.7% (12)	
Treatment			
No Treatment	1 (0.5%)	1 (1.7%)	
Lorazepam	177 (93.2%)	56 (94.9%)	
ECT	104 (54.7%)	23 (39.0%)	
Other	6 (3.2%)	6 (10.2%)	

Table 1. Demographic and clinical characteristics

Ninety-five percent of patients had a history of mental illness: depression (44%), schizophrenia (36.8%), and bipolar disorder (17.6%) were the most common.

RESULTS

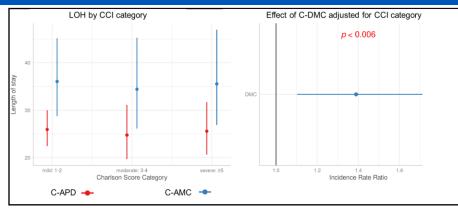


Figure 1. LOH and CCI

- When adjusting for CCI score, individuals with C-AMC had a hospital stay 1.39 (p=.006) longer than these with C-APD.
- The most frequent comorbidities were diabetes (11.8%), heart failure (11.4%), dementia (8.6%) and cancer (8.6%) with no significant differences among catatonia phenotypes except for history of stroke.

DISCUSSION

- In both groups, C-APD and C-AMC, almost 50% of individuals had considerable comorbid conditions, categorized as moderate or severe on the CCI, with no significant differences among subtypes.
- Those individuals with C-AMC showed a tendency to higher comorbidities and longer hospital stays.

CONCLUSIONS

- The etiology of catatonia and its comorbidity profile may influence the requirements of impatient care.
- It is relevant to properly approach comorbid conditions in patients with catatonia
 REFERENCES

regardless of the underlying cause.

