

Comparison of the Pharmacokinetics/Pharmacodynamics of a Fixed-Dose Combination of Rabeprazole/Magnesium Oxide 20/350 mg to the Enteric-Coated Rabeprazole 20 mg

Heejae Won^{1,2}, SeungHwan Lee¹

¹Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea ²Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea

BACKGROUND

- Proton pump inhibitors (PPIs), including rabeprazole is commonly used for acid-related disorders.
- However, the use of enteric-coated (EC) formulation of PPIs, due to their rapid degradation in acid environments, causes medical unmet needs such as delayed absorption and slow onset of action.
- The fixed-dose combination (FDC) of rabeprazole/magnesium oxide (MgO) 20/350 mg (DHNP-2001B) was newly developed to address these challenges observed with conventional EC formulation of rabeprazole 20 mg (Pariet® 20 mg).

OBJECTIVE

• This study aimed to evaluate pharmacokinetics (PKs) and pharmacodynamics (PDs) of FDC of rabeprazole/MgO 20/350 mg in comparison to the conventional EC formulation of rabeprazole 20 mg.

METHODS

Study Design

- A randomized, open-label, multiple-dose, 2-sequence, 2-period crossover study was conducted.
- Eligible subjects randomly received either the FDC or the conventional formulation for 7 days in the first period and the alternative in the second period with a 14-day washout.

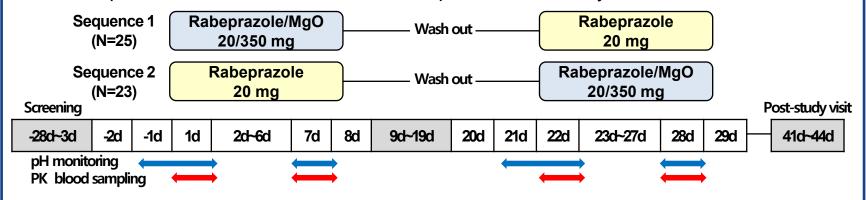


Figure 1. Study design.

Pharmacokinetic Assessment

- Blood samples were collected for PK analysis after the single- (Day 1) and multiple-dose (Day 7).
 At pre-dose (0h), 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 24 h post-dose
- Plasma concentrations of rabeprazole were determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS).
- PK parameters were estimated using noncompartmental analysis using Phoenix WinNonlin® 8.3.

Pharmacodynamic Assessment

- Continuous 24-hour intragastric pH monitoring was conducted for PD analysis at before dose (Day -1) and after the single- (Day 1), multiple-dose (Day 7) using a Digitrapper™ pH-Z recorder.
- Calibration of the pH catheter with a standard solution of pH 4 and 7
- Subjects start their standardized meals 4.5 and 10.5 hours after dosing
- PD parameters included decrease from baseline in the integrated gastric acidity, percentage of time with gastric pH >4, mean and median gastric pH after the single- and multiple-dose.

RESULTS

- Thirty-seven healthy subjects completed the study and included in PK and PD analyses.
- The systemic exposures of rabeprazole were similar between the treatments after the single- and multiple-dose.
- The GMR (90% CI) of the FDC to the conventional formulation for the area under the curve within a dosing interval (τ) at steady state (AUC_{τ ss}) was 0.9852 (0.8916 1.0887).
- The time to reach the maximum rabeprazole concentration of the FDC was 2.5-3 hours faster than the conventional rabeprazole
- The extents of gastric acid suppression after the single- and multiple-dose were comparable between the treatments.
- The GMR (90% CI) of the FDC to the conventional formulation for percent decrease from baseline in the integrated gastric acidity over a 24-hour interval was 0.9650 (0.8932 1.0425) at steady state.

Table 1. Summary of pharmacokinetic parameters of rabeprazole after the single- and multiple-dose.

Dosing	Parameters	Rabeprazole/MgO 20/350 mg (N=37)	Rabeprazole 20 mg (N=37)	GMR* (90% CI)
Single-dose	T _{max} (h)	1.50 [1.00 - 2.50]	4.00 [2.00 - 8.00]	-
(Day 1)	$C_{max}(\mu g/L)$	688.44 ± 404.66	820.63 ± 361.93	-
	$AUC_{\tau}(h\cdot \mu g/L)$	1320.50 ± 697.88	1534.15 ± 751.89	-
	t _{1/2} (h)	2.85 ± 1.23	2.25 ± 1.17	-
	CL/F (L/h)	16.49 ± 8.88	12.77 ± 7.85	-
	$V_z/F(L)$	49.99 ± 47.37	23.59 ± 6.87	-
Multiple-dose	T _{max,ss} (h)	0.50 [0.20 – 2.50]	3.50 [2.50 – 6.00]	-
(Day 7)	$C_{\text{max,ss}}(\mu g/L)$	820.45 ± 408.57	776.71 ± 339.57	-
	$AUC_{t,ss}$ (h·µg/L)	1517.24 ± 857.75	1525.17 ± 752.15	0.9852 (0.8916 - 1.0887)
	t _{1/2,ss} (h)	3.01 ± 1.20	2.89 ± 2.27	-
	CL/F _{ss} (L/h)	18.49 ± 11.99	19.28 ± 22.05	-
	$V_z/F_{ss}(L)$	72.60 ± 50.18	120.27 ± 433.16	-

Notes: Data are presented as mean ± standard deviation, except for T_{max}, which is presented as median [min – max]

Abbreviations: C_{max}, maximum plasma concentration; C_{max,ss}, maximum plasma concentration at steady state; AUC_T, area under the concentration-time curve over the dosing interval; AUC_{T,ss}, area under the concentration-time curve over the dosing interval at steady state; T_{max}, time to reach C_{max}; T_{max,ss}, time to reach C_{max,ss}; CL/F, apparent clearance; CL_{ss}/F, apparent clearance at steady state; V_{ss}/F, apparent volume of distribution; V_{ss}/F, apparent volume of distribution at steady state; *Geometric mean ratio (GMR) and 90% confidence interval (CI) of the FDC of rabeprazole/MgO 20/350 mg to the conventional EC formulation of rabeprazole 20 mg.

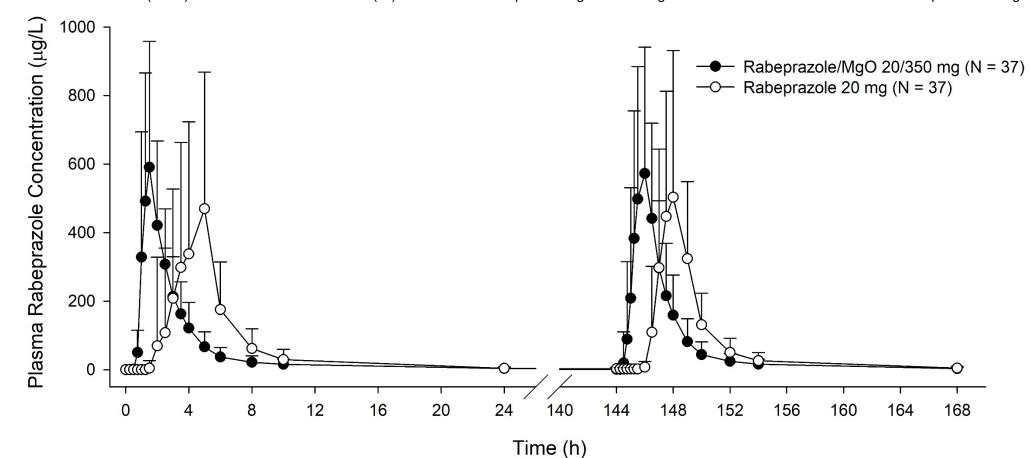


Figure 2. Mean plasma concentration-time profiles of rabeprazole after the single- and multiple-dose. Bars represent the standard deviations.

Table 2. Summary of pharmacodynamic parameters of rabeprazole after the single- and multiple-dose. GMR* Rabeprazole/MgO 20/350 mg Rabeprazole 20 mg Dosing **Parameters** (90% CI) (N=37)(N=37)74.24 ± 16.38 Single-dose % Δ Integrated gastric acidity 75.84 ± 13.82 1.0474 (0.9582 – 1.1448) 43.47 ± 16.99 47.97 ± 15.95 % Time with gastric pH > 4 (Day 1) Mean gastric acid concentration 3.60 ± 2.16 3.91 ± 1.98 Median gastric acid concentration 1.98 ± 2.70 1.43 ± 1.69 80.61 ± 15.55 81.36 ± 14.78 0.9650(0.8932 - 1.0425)Multiple-dose % Δ Integrated gastric acidity 59.93 ± 15.64 59.33 ± 17.56 (Day 7) % Time with gastric pH > 4 2.79 ± 2.12 2.86 ± 2.18 Mean gastric acid concentration

 0.29 ± 1.03

 0.31 ± 0.66

Notes: Data are presented as mean ± standard deviation
Abbreviations: Δ, percentage decrease from baseline;

Median aastric acid concentration

*Geometric mean ratio (GMR) and 90% confidence interval (CI) of the FDC of rabeprazole/MgO 20/350 mg to the conventional EC formulation of rabeprazole 20 mg.

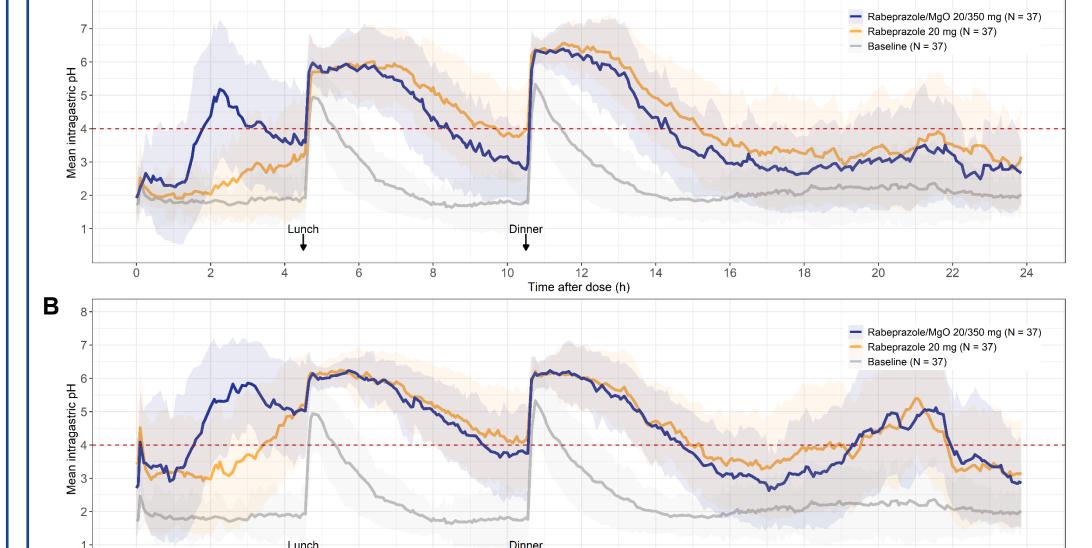


Figure 3. Mean intragastric pH-time profiles of rabeprazole after the (A) single- and (B) multiple-dose.

CONCLUSIONS

The FDC of rabeprazole/MgO 20/350 mg (DHNP-2001B) showed rapid absorption compared to the
conventional formulation of rabeprazole 20 mg (Pariet® 20 mg), without altering the overall systemic exposure
and the intragastric acid suppression effect.

CONFLICTS OF INTEREST

- This study was sponsored by DaehanNupharm Co., Ltd., Republic of Korea
- Authors do not have any conflicts of interest for this study.