#146

College of Pharmacy UNIVERSITY of FLORIDA

INTRODUCTION AND OBJECTIVES

Optimizing Simvastatin Dosing in Patients Post-gastric Bypass Surgery Using a Population PK/PD Link Approach

¹Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida; ²School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil; ³School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP); ⁴School of Medicine of Ribeirão Preto, University of São Paulo (USP).

ographic and clinical data of the investigated subjects			
	Average ± SD [min-max]		
	42.45 ± 8.2 [26-58]		
ales)	100		
ric bypass surgery			
, %)	10 (41.67%)		
B surgery (n, %)	14 (58.33%)		
	35.3 ± 11 [23.73-63.02]		
	46.4 ± 8.5 [44.2-63.02]		
B surgery	28 ± 2.7 [23.73-32.4]		
/1.73 m ²)	106.36 ± 8.47 [86.3-123.55]		
n (g/dL)	4.11 ± 0.26 [3.72-4.68]		
	Depot Ka (1/h) F = 0.05 (non-RYGB subjects) F2 (RYGB subjects)		
t ka (1/h)	Central Cc (nM), V1 (L)		
Gallbladder	k _{pm} CI (L/h)		
	Metabolite Clm (L/h)		

Figure 1. Diagnostic plots showing the prediction corrected visual predictive check after 1000 simulations for SV (a) and SVA (b). SV: simvastatin lactone; SVA: simvastatin acid.

> Model predictions align closely with observed data for both SV and SVA There is a 40% reduction in oral bioavailability in patients post-gastric bypass surgery Subjects with SLCO1B1 521TC genotype showed reduced clearance of SVA compared to homozygous wild-type carries (521TT)

Parameters (unit)	Population Estimates [% RSE]	Bootstrap Analysis* median [95% CI]
F	0.05 [fixed]	0.05 [fixed]
F2	0.03 [0.067]	0.033 [0.021-0.050]
ka (h⁻¹)	0.84 [16.2]	0.87 [0.59-2.58]
V1 (L/h)	47.63 [21.7]	55.32 [28.23-96.77]
CI (L)	18.73 [60.7]	16.04 [0.06-56.45]
Q (L)	77.41 [21.2]	87.96 [60.39-127.38]
V2 (L/h)	676.64 [29.1]	863.30 [347.48-2354.12]
V _m (L)	59 [fixed]	59 [fixed]
Cl _m (L/h)	60.44 [19.6]	59.84 [37.19-100]
SLCO1B1_TC on CL _m	-0.77 [38]	-0.70 [(-1.57)-(-0.08)]
SLCO1B1_CC on CL _m	-1.29 [29.2]	-1.34 [(-1.92)-(-0.03)]
Kpm (h⁻¹)	0.66 [21.5]	0.59 [0.34-0.88]
K _{bile} (h ⁻¹)	0.56 [0.083]	0.49 [0.23-0.91]
K _{empt} (h⁻¹)	15 [fixed]	15 [fixed]
T _{gap} (h)	3.43 [10.5]	3.49 [2.7-4.77]
Random effects [ω]		
ka	0.46 [33.9]	0.48 [0.21-1.34]
V1	0.46 [28.7]	0.39 [0.09-0.69]
Cl	1.42 [38.2]	1.33 [0.71-2.65]
Q	0.7 [25.5]	0.65 [0.24-1.04]
V2	0.46 [57.9]	0.52 [0.15-1.10]
V _m	0.64 [fixed]	0.64 [fixed]
Cl _m	0.37 [26.4]	0.28 [0.05-0.51]
Крт	0.32 [66.8]	0.30 [0.10-0.63]
T _{gap}	0.35 [fixed]	0.35 [fixed]
Residual Error Model		
[٤]		
b2 (SVA)	0.42 [6.03]	0.42 [0.37-0.46]
b1 (SV)	0.41 [6.65]	0.41 [0.36-0.45]

Costa ACC¹, Medeiros IJM², Yamamoto PA^{1,3}, Kang W¹, Gaitani CM³, Sankarankutty AK⁴, Junior WS⁴, Santos JS⁴, Schmidt S¹, De Moraes NV¹

> **Table 2.** Population pharmacokinetic model parameter estimates for the parent-metabolite model for simvastatin and simvastatin acid

<20% reduction from baseline 20-25% reduction from baseline <30% reduction from baseline 30-49% reduction from baseline</p>

Figure 3. PK/PD simulations to compare the percentage of subjects achieving certain goals in LDL-C baseline reductions in virtual subjects genotyped as SLCO1B1 521TT. For low-intensity statin (a), responders were classified as achieving a reduction of 20%-25%; for moderate-intensity statin (b and c), responders were classified as achieving a reduction of 30%-49%. Data are shown as percentages of responders (green) and non-responders (orange).

Second SV by Gastric bypass surgery reduces oral bioavailability and exposure to SV by approximately 40%. Reference individuals post-RYGB exhibit diminished exposure to SV and may benefit from increasing the dose or adjunctive therapy with non-statin drugs to attain equivalent responses and mitigate potential adverse events.

Figure 2. Effect of covariates on SV and SVA exposure after multiple dose of 40 mg. (a): AUC_{0- $\tau} of SV; (b): AUC_{0-<math>\tau} of SVA. SV:$ </sub></sub> simvastatin; SVA: simvastatin acid; RYGB: gastric-bypass. *Mann-Whitney test (p<0.05)

<30% reduction from baseline 30-49% reduction from baseline

> For low-intensity statin patients: an increase in the dose from 10 to 20 mg in post-gastric bypass patients will maintain a comparable response to that of non-operated subjects. > For moderate-intensity statin: increasing the dose to 40 or 60 mg or adding a non-statin medication in post-gastric bypass will result in similar therapeutic outcomes.

CONCLUSIONS

