

Modeling Age-related Changes in Kidney Function Using Aminoglycoside **Clearance as a Surrogate: Can Body Composition Help?** Radin Alikhani¹, Steven R. Horbal², Manjunath P. Pai¹

ntroduction

- Drug dose modification for aging often relies on estimates of kidney function.
- Current kidney function equations estimate different rates of age-related decline in kidney function but it is not clear how best to model this trajectory.
- Body size is used to estimate kidney function but we presently do not incorporate body composition, which also changes with age.
- We hypothesized radiomic-based models of aging as covariates of kidney function.

Methods

References

- The study population retrospectively reviewed patients who were treated with tobramycin or gentamicin.
- Patients with at least 3 measured drug concentrations and available CT imaging were included.
- A population pharmacokinetic (Pop-PK) model for aminoglycoside was constructed to compute the volume (V) and clearance (CI) estimates with Monolix V2024R1. Various combinations of CT-based biomarkers were
- developed as a BA_{Mor} index and tested against aminoglycoside CI to improve kidney function.

BA_{Mor 1} (Psoasexpmuscarea * BMD)/Fasciaarea

BAMor 2 Psoasexpmuscarea * PsoasexpmuscHU * Vbslabheight

BAMor 3 (Dmgexpmuscarea * BMD)/Visceralfatarea

1. Alikhani R & Pai MP. (2023) Clin. Trans. Sci. 16(11), 2095-2105. 2. Alikhani R, Horbal S, Rothberg A, Pai MP. (2024). Clin. Trans. Sci. (Under Revision)

¹ Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI ² Department of Surgery, University of Michigan, Ann Arbor, MI

Results

- The final sample included 156 unique patients, 89 (58%) of which had tobramycin administered (n=89).
- The median (minimum, maximum) age, height, and weight of patients were 58 (21, 93) years, 170 (147, 203) cm, and 80 (43.8, 139.3) Kg.
- The PK of aminoglycosides was best described using a <u>one-compartment</u> structure with an additive and proportional error model.
- Estimated PK parameters: 45.89 L for V and 2.62 L/h for Cl.

Model number	19.1 BA _{Mor_1} -based		25.1 BA _{Mor_2} -based		29.2 BA _{Mor_3} -based		6.1 CA-based	
	Value	RSE%	Value	RSE%	Value	RSE%	Value	RSE%
	(SE)		(SE)		(SE)		(SE)	
Fixed effects								
V_pop	49.09	6.66	45.87	7.39	45.89	7.03	49.2	7.04
	(3.27)		(3.39)		(3.23)		(3.46)	
Beta_V_drug_tobramycin	0.24	34.5	0.29	29.5	0.28	30.2	0.25	33.8
	(0.083)		(0.087)		(0.085)		(0.086)	
Cl_pop	5.8	4.48	5.72	4.65	2.62	38.9	5.82	4.55
	(0.26)		(0.27)		(1.02)		(0.26)	
Beta_Cl_(BA _{Mor} /creat)	0.15	30.5	0.12	38.2	0.11	29.4		
	(0.047)		(0.046)					
Beta_Cl_(subcutfathu)					-0.93	40.5		
					(0.38)			
Beta_Cl_(CA ⁻¹ /creat)							0.19	32.7
							(0.062)	
Fixed effects by category	/							
V_drug_Gentamicin	49.09	6.66	45.87	7.39	45.89	7.03	49.2	7.04
	(3.27)		(3.39)		(3.23)		(3.46)	
V_drug_Tobramycin	62.38	5.17	61.61	5.21	60.75	5.31	63.42	5.26
	(3.23)		(3.21)		(3.22)		(3.34)	
Standard deviation of the	e random	effects						
Omega_V	0.37	10.5	0.37	11.6	0.36	10.7	0.38	10.7
	(0.038)		(0.043)		(0.039)		(0.04)	
Omega_Cl	0.49	6.43	0.51	6.61	0.49	6.53	0.49	6.41
	(52.63)		(0.034)		(0.032)		(0.032)	
Error model parameters								
а	0.049	46.7	0.12	34.9	0.13	30.5	0.069	53.5
	(0.023)		(0.043)		(0.038)		(0.037)	
b	0.4	3.38	0.38	3.59	0.39	3.67	0.4	3.51
	(0.013)		(0.014)		(0.014)		(0.014)	

Conclusion

 Radiomic biomarkers can be aggregated to develop biological indices representing aging and body composition in patients. BA_{Mor}-based Pop-PK models of aminoglycoside clearance had significantly lower AIC than the CA-based model. Future research is encouraged to incorporate biomarkers such as kidney-specific imaging metrics or genetic factors to refine the BA indices.

Model Base (1-compartment combined-2) Base + CA/creat CL + drug V Base + 1/(CA*creat) CL + drug V Base + BA_{Mor_1}/creat_CL¹ + drug_V Base + BA_{Mor_2}/creat_CL² + drug_V Base + BA_{Mor_3}/creat_CL³ + subcutfathu⁴_CL + drug_V

Connect with Me

Discussion

The radiomic biological age model offers a small improvement over the chronological age model.