Sisunatovir Inhibition of Multiple Ion Channel Subtypes Prevents the Risk for QT Prolongation Due to hERG Channel Inhibition

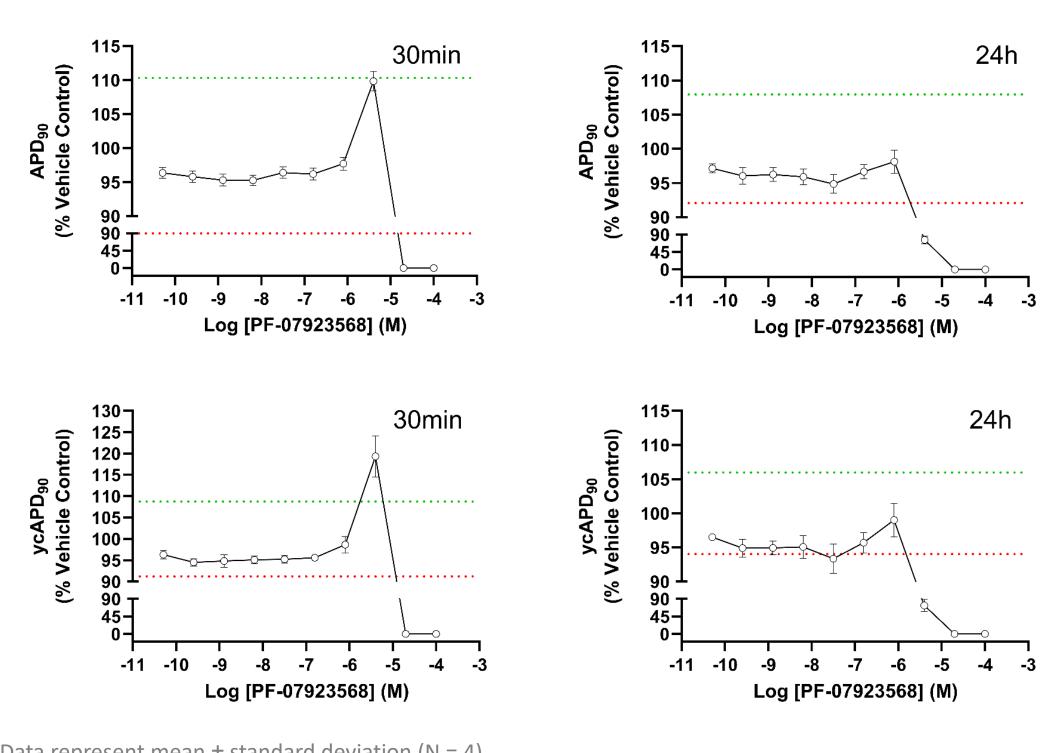
Ryan Franke¹, Peter Kilfoil¹, Jian Liu², Bisrat Abraham¹, Vu Le¹, Stephen Jenkinson³, Todd Wisialowski¹, N. Niki Alami¹, Arthur Bergman¹ ¹Pfizer Research and Development, USA; ²Pfizer Investment Co., LTD; ³Metrion Biosciences Ltd., UK

Introduction

- Sisunatovir (PF-07923568) is a Respiratory Syncytial Virus (RSV) F-protein inhibitor with high in vitro potency against RSV A & B strains.
- A Viral Challenge study (NCT03258502) demonstrated that sisunatovir 200 mg Q12h for 5 days significantly reduced viral load and symptoms with a favorable safety and tolerability profile.
- Sisunatovir inhibits the hERG channel in vitro (IC₅₀: 1.8 μ M), potentially producing clinical QTc prolongation. However, sisunatovir inhibits additional cardiac ion channel subtypes (Cav1.2 [IC₅₀ 19.8 μ M] and Nav1.5 [IC₅₀ 12.1 μ M]), potentially offsetting delayed repolarization of the cardiac action potential via hERG inhibition.
- A thorough QT (TQT) study was conducted with a positive control to assess assay sensitivity and a supratherapeutic dose to cover high clinical exposures (288 ng/mL; ~118 nM).
- The objective of this study was to evaluate the impact of sisunatovir on QTc prolongation, at high clinical exposures, utilizing preclinical and clinical data.

Methods

- Human induced pluripotent stem cell (hiPSC) derived cardiomyocyte model used nominal and rate-corrected action potential duration changes to predict the concentration associated with a clinical 10 ms QTc prolongation following acute (30-minute) or chronic (24-hour) exposure.
- An *In silico* model, trained on a library of clinical compounds with known proarrhythmic risk (CredibleMeds), was developed to define the potential for Torsade de Pointes (TdP) relative to effective free therapeutic plasma concentrations (EFTPCs).
- A Phase 1, double-blind, sponsor-open, randomized, 3-period, placebo and positive-controlled crossover, TQT study was conducted in 43 healthy participants at Pfizer Clinical Research Unit (PCRU) at New Haven, CT. (NCT05878522).
 - Sisunatovir 300 mg Q12h x 5 doses (n=13) did not achieve high clinical exposure; dose increased to 350 mg Q12h x 5 doses (n=29),
 - QTc prolongation evaluated at steady-state,
 - Administration in fed state to decrease exposure variability and improve GI tolerability,
 - Moxifloxacin 400 mg administered as positive control
- Pre-specified linear mixed effects (LME) model to characterize relationship between sisunatovir concentration and QTc change (C-QTc). The LME model was used to derive predictions of placebo-corrected change from baseline in QTcF ($\Delta\Delta$ QTcF) and corresponding 2-sided 90% CIs for the concentration range.

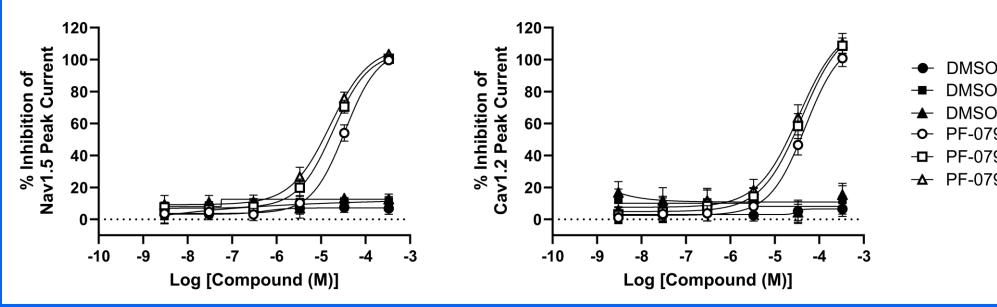

Results (hiPSC)

Ą		

Acute sisunatovir exposure (30 min) in hiPSC was predicted to cause a 10 ms increase in clinical QTc duration at 1.8 μ M (>15-fold above high clinical exposure).

- Chronic sisunatovir exposure (24 h) was predicted to cause no prolongation in clinical QTc up to 76 μ M (>640-fold high clinical exposure).
- In the hiPSC model, it is predicted that 200 mg sisunatovir Q12h for 5 days is unlikely to result in QTc prolongation (Figure 1).

Figure 1: Effect of sisunatovir on action potential duration at 90% repolarization (APD90) and Yamamoto rate corrected APD90 (ycAPD90)

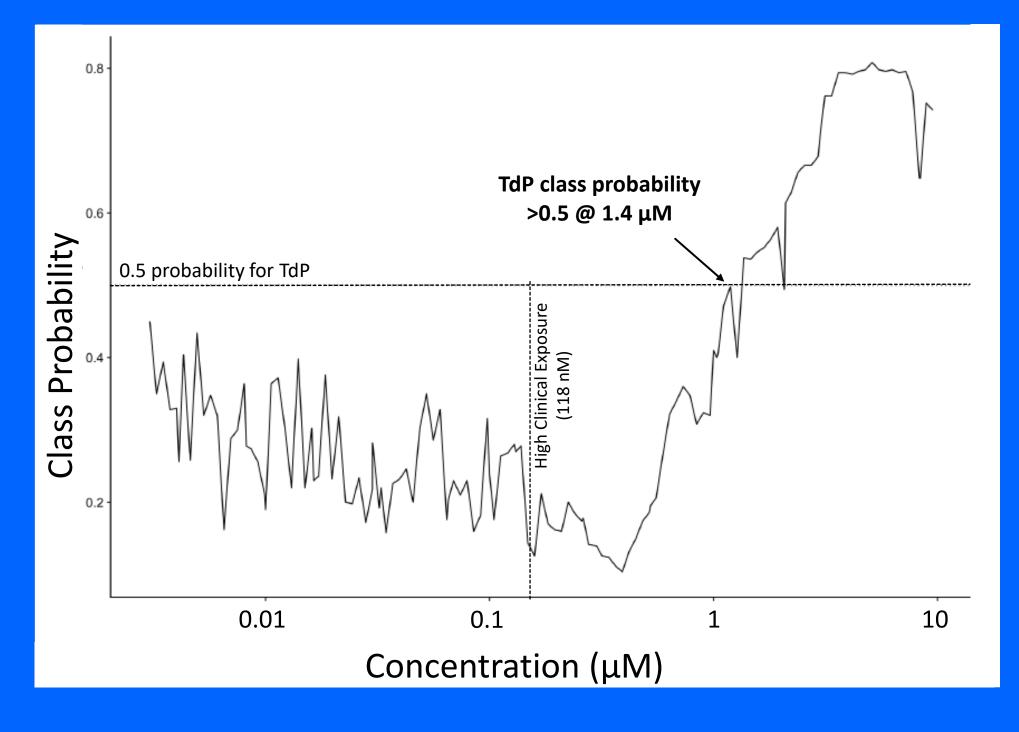


Red dashed lines represent the threshold level for a decrease in response

Results (Cardiac Ion Channels)

- Fluorescent polarization binding assay used to evaluate hERG (Ki = 6.0μ M; margin = 51x) inhibition.
- Planar patch clamp technique used to record currents from Nav1.5 ($IC_{50} = 12.1 \mu M$; margin = 103x) and Cav1.2 ($IC_{50} = 19.8 \ \mu M$; margin = 168x) channels expressed in mammalian cell (Figure 2).

Figure 2: In vitro inhibition of sisunatovir at Nav1.5 and **Cav1.2 ion channels**



- DMSO (1st) - DMSO (2nd)
- DMSO (3rd)
- ▲ PF-07923568 (3rd)

Results (In Silico Model)

- Over the test range of free plasma sisunatovir concentrations from 3 nM to 10 µM, the in silico model predicted \geq 1.4 µM (>11-fold high clinical exposure) would be associated with a TdP class probability risk (Figure 3).
- These data support the prediction that there is a low risk of significant clinical QTc prolongation with sisunatovir.

Figure 3: The model Tdp class probability as a function of the clinical EFTPC

Results (Clinical Study)

- Participants: Male (65%), Mean (Range) Age: 43.3 (23-64) Years.
- All treatments were safe and well-tolerated.
- The lower limits of the two-sided Bonferroni-adjusted 90% CI (96.7% CI) for mean differences in QTcF between moxifloxacin and placebo were significant at 3- and 4-hours post-dose (8.03 and 7.65 msec, respectively). Thus, the study was deemed to have adequate sensitivity to detect QTc prolongation.

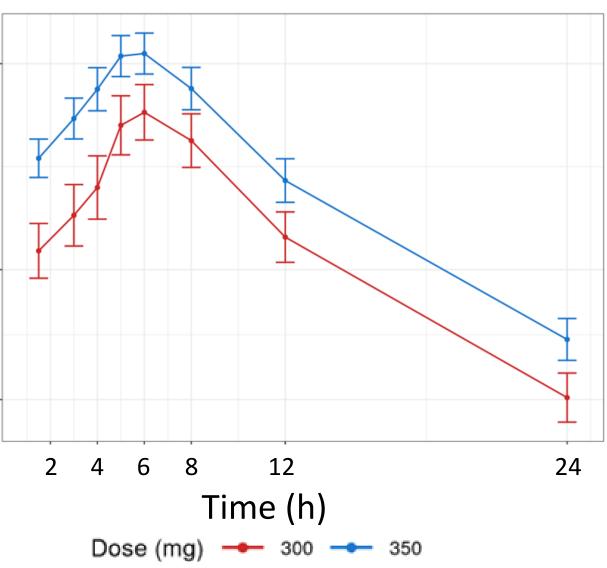
Sequence	Period 1	Period 2	Period 3	
1 (n=7)	А	В	С	
2 (n=7)	А	С	В	
3 (n=7)	В	А	С	
4 (n=7)	В	С	А	
5 (n=7)	С	А	В	
6 (n=7)	С	В	А	
Treatment A = Sisunatovir capsules Q12h x 5 doses (fed) Treatment B = Placebo capsules Q12h x 5 doses (fed) Treatment C = Moxifloxacin (positive control) (fed)				

Table 1: Randomization sequence

o 100

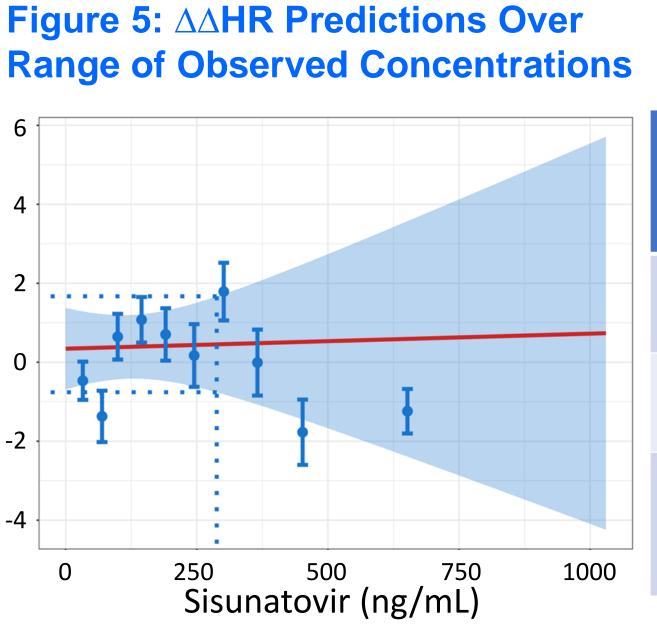
Results (C-QTc Modeling)

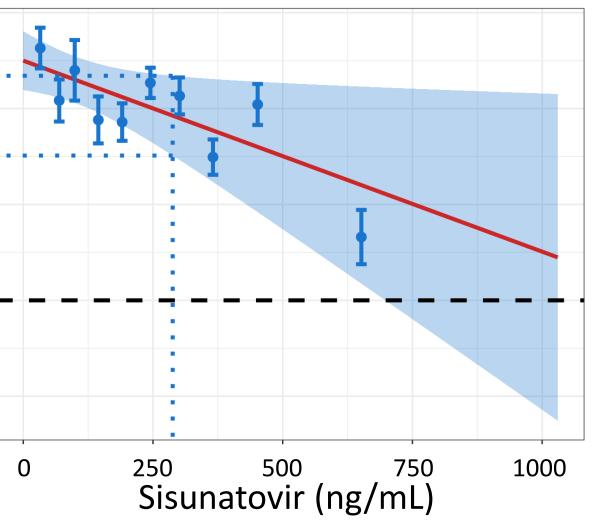
-15


Conclusions

Results (Clinical Exposure)

Steady-state exposure of 350 mg Q12h sufficient to cover High Clinical Exposure (Figure 4 and Table 2).


Figure 4: Plasma PK Profile of 300 and 350 mg Q12h Sisunatovir


Table 2: Plasma PK Parameters of 300 and 350 mg Q12h Sisunatovir

Parameter (unit) ^a	Sisunatovir 300 mg	Sisunatovir 350 mg
Ν	13	29
AUC ₁₂	1978	2870
(ng.hr/mL)	(83)	(92)
AUC ₂₄	2951	4194
(ng.hr/mL)	(79)	(94)
C _{max}	238.0	344.4
(ng/mL)	(85)	(87)
T _{max}	6.00	6.00
(hr)	(5.00 - 8.32)	(1.53 - 6.02)

No clinically significant effect of sisunatovir on HR (Figure 5 and Table 3) and QTc interval (Figure 6 and Table 4).

Figure 6: $\triangle \Delta QTcF$ **Predictions Over Range of Observed Concentrations**

Table 3: $\Delta\Delta$ **HR Predictions at high** clinical exposure

Dose (mg)	Geometric Mean C _{max} (ng/mL)	ΔΔHR (bpm)	90% CI
300	238	0.43	-0.59, 1.46
350	344	0.47	098, 1.93
High Clinical Exposure	288	0.45	-0.76, 1.67

Table 4: \Delta \Delta QTcF Predictions at Delta A high clinical exposure

Dose (mg)	Geometric Mean C _{max} (ng/mL)	ΔΔHR (bpm)	90% CI
300	238	0.13	-1.6, 1.86
350	344	-0.93	-3.44, 1.58
High Clinical Exposure	288	-0.37	-2.45, 1.71

Preclinical models predicted that 200 mg sisunatovir Q12h for 5 days is unlikely to result in QTc prolongation. The clinical concentration-response analyses did not identify a QTc signal of potential clinical concern with sisunatovir.