How Much PK Data Do We Really Need in Phase 3? A Milvexian Case Study

Jennifer L. Ford^{,1,*} Wangda Zhou^{,1} Emily Bozenhardt^{,1} Yaming Su^{,1} Mahesh N. Samtani^{,1} Juan Perez-Ruixo^{,2} Navin Goyal¹ ¹Janssen Research & Development, LLC, a Johnson & Johnson Company, Raritan, NJ, USA; ²Janssen Research & Development, LLC, a Johnson Company, Beerse, Belgium.

BACKGROUND AND OBJECTIVE

- In large clinical trials, optimizing the collection of pharmacokinetic (PK) samples could significantly reduce patient burden, improve study feasibility, and conserve resources
- Using milvexian, a selective factor XIa inhibitor, as an example, we leveraged a model-based approach to assess the proportion of patients from which PK samples should be collected to allow for robust characterization of the relationship between exposure and safety or efficacy outcomes
- This helped to inform the PK sampling strategy of the 3 large, ongoing clinical trials of the milvexian phase 3 program (ClinicalTrials.gov Identifiers: NCT05702034, NCT05754957, and NCT05757869)

METHODS

- **Two key scenarios** were evaluated pertaining to whether an underlying relationship exists between milvexian exposure and event outcomes (safety or efficacy):
- Event outcomes occur stochastically irrespective of milvexian systemic exposure
- 2. Milvexian systemic exposure drives safety and/or efficacy; a logistic regression-based approach describes the relationship between milvexian exposure and event outcomes
- The percentage of trials that accurately approximate underlying event rates was estimated. In addition, the ability to detect the presence or absence of a relationship between milvexian exposure and event outcomes and to adequately estimate the potential relationship was also characterized

Model Assumptions

- Drug exposure: area under the curve (AUC; dose/clearance) drives safety/efficacy
- A total of 15,000 patients (planned study size) randomized 1:1
- Event rates (safety/efficacy) of 1% to 5% based on historical data
- Presumed between-patient variability in exposure of 30% to 50%

RESULTS

Table 1.

N = 2000

- Trials wit
- Event rat
- Number
- AUC mea
- CI, confidence interval.

Table 2. Scenario 2: Characterizing the Underlying Relationship Between Milvexian Exposure and Event Outcomes

N = 2000

- Number
- Trials with
- Trials with
- AUC mea

Assuming an exposure-response relationship exists with a 1% event rate (0.5% baseline event rate) and 50% between-subject variability in exposure; β 1 = 0.025. Values are median (90% CI) unless otherwise stated. *AUC mean ratio = mean AUC for patients with/without event.

CONCLUSIONS

Scenario 1: Estimation of Underlying Outcome Event	Rates
--	-------

. Scenario 1: Estimation of Underlying Outcome Event Rates				
	Population sampled			
0 trials	100%	50%	33%	
th event rate accurately estimated (≥80%), %	100	95	91	
te estimated, %	1.0 (1.0-1.0)	1.0 (0.8-1.2)	1.0 (0.7-1.2)	
ofevents	75 (75-75)	38 (30-45)	25 (17-30)	
an ratio*	1.06 (1.06-1.06)	1.06 (0.96-1.17)	1.06 (0.91-1.22)	

ssuming a 1% event rate. Values are median (90% CI) unless otherwise stated. *AUC mean ratio = mean AUC for patients with/without event.

	Population sampled		
) trials	100%	50%	33%
ofevents	77 (77-77)	39 (32-46)	25 (19-32)
$h\beta 1 ≠ 0 (P < 0.05), %$	100	94	77
h slope within ±35% of true slope, %	100	91	78
an ratio*	1.32 (1.32-1.32)	1.32 (1.16-1.47)	1.32 (1.11-1.53)

PK sampling of only a subset (33% [5000/15,000]) of the study population provided sufficient data to: — Estimate event rates ≥1% in ≥91% of trials

— Estimate the absence or presence of the exposure-response relationship in ≥77% of trials Characterize the underlying exposure-response relationship

The modeling and simulation framework presented herein provided guidance on an optimal PK sampling strategy for the 3 large, ongoing clinical trials of the milvexian phase 3 program and can be applied to optimize PK sampling in other large clinical trials

Tick marks at y = 0 and y = 0.10 represent individual patients without and with an event, respectively, at the corresponding milvexian exposure. The blue shaded area represents the 95% CI, and the solid black line is the median.

Acknowledgments

This study was sponsored by Bristol Myers Squibb and Janssen Research & Development, LLC, a Johnson & Johnson Company. Editorial support was provided by Kim Caldwell, PhD, of Lumanity Communications Inc., and was funded by Bristol Myers Squibb and Janssen Research & Development, LLC, a Johnson & Johnson Company.

Disclosures

JLF, WZ, and MNS are employees and shareholders of Janssen Research & Development, LLC, a Johnson & Johnson Company. EB, YS, JP-R, and NG are employees of Janssen Research & Development, LLC, a Johnson & Johnson Company.

