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Purpose
The aim was to develop a multi-model-informed drug 
development (MIDD) framework for informing and optimizing 
dosing regimens of oncology compounds for treatment of 
solid tumors in early to mid-phase development, through 
incorporation of population models of pharmacokinetics, 
tumor dynamics and longitudinal safety profile (e.g. 
myelosuppression) with consideration of expected dose 
modifications, ultimately expressed in simplified scores 
of clinical utility.

Methods
Population pharmacokinetic (popPK) models and 
longitudinal population exposure-response (ER) models for 
tumor dynamics1,2 and myelosuppression3 were developed 
as fit-for-purpose and refined as data arose throughout 
early-stage development of novel compounds. 
Predictions of tumor response rate (TRR) and incidence of 
hematologic adverse events (AE) by severity were derived 
from longitudinal models across various starting dosing 
regimens of interest using adaptive dosing trial simulations 
(a Monte-Carlo simulation platform4). 
This method allowed for simulating the impact of dose modifications. Future 
doses were dictated by simulated myeloid cell counts predicted from the 
longitudinal ER safety model with user-specified rules for lab sampling 
frequency and dosing modifications with levels (hold, retest, rechallenge, 
reduce or discontinue). Simulated dosing and subsequent PK profiles provided 
input into ER models to predict efficacy and safety outcomes.

Simulated TRR and incidence of Grade ≥3 hematologic 
AEs were calculated for each virtual trial using adaptive 
dosing and summarized across trials by dosing regimen 
(mean and 90% CI).
Logistic regression ER models for efficacy and safety were 
developed for other relevant endpoints, and same simulation 
method used to predict the probability of each event with 
confidence intervals. 
The clinical utility score of each dosing regimen was 
calculated based on simulated safety and efficacy outcomes5 
to guide dosing decisions. Sensitivity analyses were 
conducted by varying the weight of safety and efficacy 
components (e.g. 50%/50% vs 25%/75%).

Lessons Learned
Early development may be limited by lack of data for building reliable longitudinal ER models, as data is from small 
cohorts, and is quickly evolving. 
Impact of clinical covariates may be unknown at this stage. 
Adaptive dosing simulations sensitive to sampling frequency and user rules for dose holds, restarts (when, what dosing 
regimen) and discontinuations. Underlying ER model driving adaptive dosing should be sound.
Baseline safety lab parameter (e.g. cell count) will directly impact simulations of AE rates for such models.
Select endpoints for clinical utility will likely change over time as data evolves, new signals arise, and ER models are 
updated and expanded (e.g. incorporation of survival models).

Key Messages & Significance
This MIDD framework enables a holistic and integrated modeling approach, ideal for early to mid-phase development. 
It can be expanded to combination therapies, including novel-novel combinations, and to evaluate utility of dosing 
regimens untested clinically.
This extends previous work2,6 to solid tumor indications and incorporation of both longitudinal and logistic regression ER 
models with ability to expand to other ER modeled endpoints.
Incorporating model-informed adaptive dosing simulations better mimics real world clinical trials and general practice settings 
for robustly evaluating regimens.
This framework can be updated and adapted efficiently for use across programs once models are available.

Figure 1. Illustration of MIDD Framework 

Figure 2. Semi-Mechanistic Myelosuppression Model2
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Figure 3. Representative Tumor Dynamic Model
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Equation 1. Representative Clinical Utility Index (CUI) calculation

CUI= W1*efficacy + W2*safety
Where W1 and W2 are positive weights summing to 1, efficacy is the utility function 
(e.g., tumor response rate), and safety is the utility function (e.g., rate of Grade ≥3 hematologic 
AE, probability of other AEs)
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Results Figure 4. Clinical Utility Score Results

Table 1. Simulated Efficacy & Safety Events

Dosing 
Regimen

Tumor 
Response Rate

(from tumor 
dynamic model)

Rate of G ≥3
Hematologic AEs 
(from myelosuppression 

model)

1 30% (20-40%) 30% (20-40%)

2 35% (25-45%) 40% (30-50%)

3 50% (40-60%) 45% (35-55%)

4 55% (45-65%) 60% (70-80%)
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