

Clinical Outcomes of Carfilzomib-based Chemotherapy by Relative Dose Intensity in Patients with Relapsed or Refractory Multiple Myeloma

INTRODUCTION

Multiple myeloma is a hematologic disorder characterized by abnormal proliferation of plasma cells in the bone marrow. The National Comprehensive Cancer Network guidelines version 1.2024 recommend carfilzomib, lenalidomide, and dexamethasone combination therapy (KRd) as the standard treatment for relapsed or refractory multiple myeloma. For patients with compromised overall performance or frailty, a twodrug regimen with carfilzomib and dexamethasone (Kd) is suggested, along with dose adjustments based on activity level and age.

In the treatment of multiple myeloma, which accounts for the majority of elderly patients, weakness and poor activity performance are generally known to increase the frequency of severe side effects in patients, and in practice, dose reductions are frequent due to adverse drug reactions during anticancer therapy for multiple myeloma.

OBJECTIVES

This study evaluated the dosage intensity of carfilzomib-based therapy, its therapeutic effects, and safety in a retrospective cohort of patients treated at Bundang Seoul National University Hospital from May 1, 2017, to November 30, 2022.

METHODS & MATERIALS

The study included patients aged 19 and above with relapsed or refractory multiple myeloma.

The dose intensity of carfilzomib-based therapy was analyzed by stratifying the relative dose intensity (RDI) for up to 2 cycles.

Actual dose intensity Relative dose intensity(RDI) = $\frac{1}{2}$ Standartd dose intensity

 $RDI_{KRD} = \frac{RDI_{K} + RDIR + RDID}{2} (1 \sim 18 \text{ cycles}) + \frac{RDI_{R} + RDID}{2} (after 18 \text{ cycles})$ $RDI_{KD} = \frac{RDI_{K} + RDIR}{2}$

Treatment outcomes, including overall response rate (ORR), progression-free survival (PFS), and overall survival (OS), were assessed. Multivariate Cox proportional hazard models were employed to analyze factors influencing survival. Variables with p <0.1 in the univariate analysis were added to the multivariate analysis, and the stepwise regression method was used to select the model with the minimum Akaike information criterion (AIC) by repeating the forward selection and backward elimination method at each step.

Safety analysis identified adverse events using the National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE) version 5.0.

For all statistical analysis results, p<0.05 was considered significant. All statistical analyzes were performed using R version 4.3.2 and R studio version 2023.09.1+494.

The study included 126 eligible patients, with 85 in the KRd group and 41 in the Kd group. The median follow-up duration was 18.7 months (range 0.3-63.2). The relative dose intensity (RDI) was 0.85±0.15 for the KRd group and 0.66±0.22 for the Kd group. The KRd group showed an ORR of 88.0%, a median PFS of 16.8 months (95% CI 13.6-26.5), and an OS of 33.1 months (95% CI 27.4-43.2). The Kd group exhibited an ORR of 57.9%, a median PFS of 6.4 months (95% CI 3.0-9.8), and an OS of 26.4 months (95% CI 11.5-39.8).

Table 1. Baseline Demographic and Clinical Characteristics

Male, n (%) Age, year, mediar CrCl, mean Comorbidity[†], n (% Coronary artery Type of M protein, lgG ΙgΑ ΙgΜ Non-secretory Light-chain subtyp Kappa Lambda Unknown R-ISS stage, n (%) l or ll Unknown Cytogenetic abno Standard risk

High risk Unknown

Previous lines of th

1-2 regimens ≥3 regimens

Prior therapy, n (% Bortezomib Lenalidomide Autologous trans

Reason for treatm

Biochemical rela Symptomatic rele Refractory

CrCl, Creatinine clearance; R-ISS, Revised International Staging System; FISH, fluorescence in situ hybridization [†]Diabetes mellitus, cardiovascular disease, chronic kidney disease [‡]Cytogenetic abnormalities: t(14;16), gain/amp(1q21), and del(17p)

Soyeon Hong¹, Eunkyung Euni Lee², Soo-Mee Bang³

¹Department of Pharmacy, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Republic of Korea ²College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea ³Division of Hematology-Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Republic of Korea

RESULTS

	All (n=126)	KRd (n=85)	Kd (n=41)		
	79 (62.7)	51 (60.0)	28 (68.3)		
ın (range)	65 (40-87)	63 (40-84)	75 (48-87)		
	74.0±28	79.8±25	62.1±30		
%)	79 (62.7)	46 (54.1)	33 (80.5)		
disease	21 (16.7)	11 (12.9)	10 (24.4)		
, n (%)	68 (54.0) 20 (15.9) 2 (1.6) 36 (28.6)	49 (57.6) 10 (11.8) 2 (2.4) 24 (28.2)	19 (46.3) 10 (24.4) 0 (0.0) 12 (29.3)		
oe, n (%)	72 (57.1) 53 (42.1) 1 (0.8)	50 (58.8) 34 (40.0) 1 (1.2)	22 (53.7) 19 (46.3) 0 (0.0)		
ormalities‡	91 (72.2) 27 (21.4) 8 (6.3) by FISH, n (%)	67 (78.8) 17 (20.0) 1 (1.2)	24 (58.5) 10 (24.4) 7 (17.1)		
	58 (46.0) 31 (24.6) 37 (29.4)	45 (52.9) 23 (27.1) 17 (20.0)	13 (31.7) 8 (19.5) 20 (48.8)		
nerapy, n (%)					
	111 (88.1) 15 (11.9)	84 (98.8) 1 (1.2)	27 (65.6) 14 (34.1)		
6) splant	121 (96.0) 39 (31.0) 57 (45.2)	82 (96.5) 2 (2.4) 49 (57.6)	39 (95.1) 37 (90.2) 8 (19.5)		
nent with Kf	- -				
apse apse	92 (73.0) 18 (14.3) 16 (12.7)	66 (77.6) 13 (15.3) 6 (7.1)	26 (63.4) 5 (12.2) 10 (24.3)		

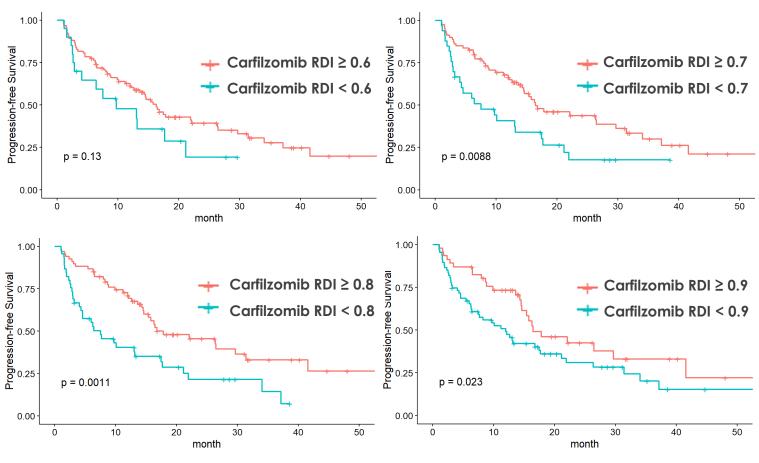

RESULTS

Table 2 Polative Dece Intensity

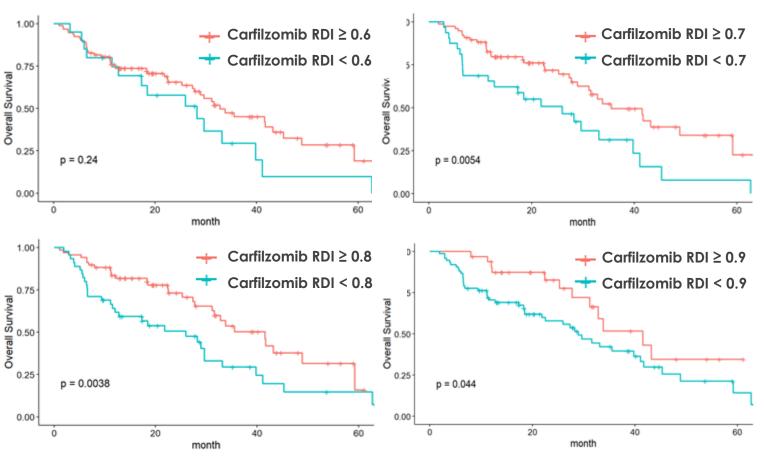

Iddle 2. Relative Dose Intensity				
	KRd (n=80)	Kd (n=33)		
First 2 cycles (RDI _{2cycle}) Carfilzomib-RDI (RDI _K) Lenalidomide-RDI (RDI _R) Dexamethasone-RDI (RDI _D)	0.85±0.13 0.87±0.16 0.82±0.20 0.85±0.18	0.66±0.22 0.64±0.19 - 0.68±0.40		
Total treatment period (RDI _{total})	0.73±0.15	0.62±0.17		

Table 3. Best Response and Overall Response Rate (n, %)			
Best response	KRd (n=83)	Kd (n=38)	
Complete response (CR)	1 (1.2)	0 (0.0)	
Very good partial response (VGPR)	49 (59.0)	9 (23.7)	
Partial response (PR)	23 (27.7)	13 (34.2)	
Minimal response (MR)	6 (7.2)	10 (26.4)	
Progressive disease (PD)	4 (4.8)	6 (15.8)	
Overall response rate (ORR)	88.0%	57.9%	

Figure 1. Treatment Response according to RDI_{κ} : PFS

Figure 2. Treatment Response according to RDI_{κ} : OS

RESULTS

Table 4. Univariate and Multivariate Analysis of Progression-free Survival					
Variables		Univariate		Multivariate	
		HR (95% CI)	P-value	HR (95% CI)	P-valu
Gender	Female	1			
	Male	1.36 (0.82-2.26)	0.237		
Age	<70	1			
	≥70	1.40 (0.85-2.29)	0.182		
R-ISS stage	l or ll	1		1	
	III	3.16 (1.80-5.55)	<0.001	4.11 (2.24-7.54)	<0.00
Auto PBSCT	Yes	1		1	
history	No	1.66 (1.02-2.71)	0.044	1.52 (0.87-2.68)	0.1
Previous lines	1-2	1		1	
of therapy	≥3	2.56 (1.41-4.65)	0.002	2.53 (2.24-7.54)	0.00
RDI _K	≥0.7	1		1	
	<0.7	2.21 (1.36-3.59)	0.001	2.00 (1.09-3.65)	0.02

HR, Hazard ratio; R-ISS, Revised International Staging System

Table 5. Univariate and Multivariate Analysis of Overall Survival

Variables		Univariate		Multivariate	
vanar	Dies	HR (95% CI)	P-value	HR (95% CI)	P-va
Age	<70	1			
	≥70	1.61 (0.96-2.70)	0.071		
CAD	No	1		1	
	Yes	2.29 (1.14-4.61)	0.020	1.93 (0.92-4.06)	0.0
Type of M	lgG	1		1	
protein	Non-IgG	1.79 (1.06-3.03)	0.028	2.19 (1.22-3.94)	0.00
Light-chain	Карра	1			
subtype	Lambda	1.73 (1.02-2.91)	0.040		
R-ISS stage	l or ll	1		1	
	III	2.20 (1.19-4.09)	0.012	2.57 (1.28-5.18)	0.00
Cytogenetic	Standard risk	1		1	
abnormalities [‡]	High risk	1.88 (1.05-3.37)	0.034	2.20 (1.16-4.17)	0.01
Auto PBSCT	Yes	1			
history	No	2.10 (1.22-3.59)	0.007	2.23 (1.24-4.12)	0.00
RDI _K	≥0.7	1		1	
	<0.7	1.96 (1.17-3.27)	0.010	1.40 (0.75-2.60)	0.29

HR, Hazard ratio; CAD, Coronary artery disease; R-ISS, Revised International Staging System; AutoPBSCT, Autologous peripheral blood stem cell transplantation ‡Cytogenetic abnormalities: t(14;16), gain/amp(1q21), and del(17p)

As a result of multivariate analysis, PFS was found to be reduced when RDI was less than 0.7, R-ISS stage III and \geq 3 chemotherapy were previous administered. OS was confirmed to be reduced significantly in non-IgG type M protein, R-ISS stage III, cytogenetic/FISH high risk, non-Auto PBSC history.

RESULTS	
Adverse reactions were reported in 124 (98.4%) of all patients. Cytopenia and infection were frequent in both groups, and rash and peripheral neuropathy were more common in the KRd grou Grade 3 or higher side effects occurred in 62 patients (72.9%) in the KRd group and 30 patients (73.2%) in the Kd group. Patients who had dose reductions and administration schedule changes were 57.1% and 68.2%, respectively, in the KRd group, and 61% and 73.2% of patients in the Kd group had reductions of discontinuations. The main reasons were hematological adverse reactions, infection, fatigue, loss of appetite, and peripheral neuropathy in the KRd group, and hematological adverse reactions, infection, fatigue, and cardiovascular adverse reactions such as dyspnea in the Kd group.	or
CONCLUSIONS	
In conclusion, the study found that an carfilzomib RDI of 0.7 or le in carfilzomib-based therapy up to two cycles impacted PFS. Patients experience a variety of adverse reactions in the first two cycles of treatment, including severe adverse reactions, and as adverse reactions repeat, the RDI decreases. Therefore, appropriate supportive care and adverse reaction monitoring should be provided to ensure optimal treatment.	C
REFERENCES	
 Rajkumar, S.V. and S. Kumar. Multiple myeloma: diagnosis and treatment. in Mayo Clinic Proceedings. 2016. Elsevier. Kang, M.J., et al., Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2020. Cancer Research an Treatment: Official Journal of Korean Cancer Association, 2023. 55(2): p. 385-399. Lee, J.H. and SM. Bang, Epidemiological change of multiple myeloma in Korea. The Korean Journal of Hematology, 2006. 41(4): p. 225-234. Siegel, D.S., et al., Improvement in overall survival with carfilzomib, lenalidomide, and dexamethasone in patients with relapsed or refractory multiple myeloma. Journal of Clinical Oncology, 2018. 36(8): p. 728-734. 	
5. Fonseca, R., et al., Trends in overall survival and costs of multiple myeloma, 2000–2014. Leukemia, 2017. 31(9): p. 1915-1921.	
6. Cho, H., et al., Single-Center Real-World Experience of Multiple Myeloma in the 21st Century. The Korean Journal of Medicine, 2022. 97(2): p. 125-140.	Ð
Acknowledgement	
There are no financial conflicts of interest to disclose.	