# Phase 1, Single-Center, Randomized, Placebo-Controlled, Partially Blinded, Single Ascending Dose Study on the Effects of Troriluzole on corrected QT in Healthy Subjects

Rachel Rozakis<sup>1</sup>, Heather Sevinsky<sup>2</sup>, Rachel Ham<sup>1</sup>, Eric Ashbrenner<sup>2</sup>, Bharat Awsare<sup>2</sup>, Mary Donohue<sup>2</sup>, Elizabeth Hussey<sup>1</sup>, Michael Hanna<sup>2</sup>, Irfan Qureshi<sup>2</sup>, Vlad Coric<sup>2</sup>, Richard Bertz<sup>2</sup>

<sup>1</sup> Allucent LLC., Cary, NC, USA; <sup>2</sup> Biohaven Pharmaceuticals, Inc., New Haven, CT, USA

### Introduction

Troriluzole is a novel, rationally designed, third-generation tripeptide prodrug of the glutamate modulating agent riluzole that is being developed for the treatment of neurodegenerative and neuropsychiatric diseases.<sup>1</sup> Troriluzole was designed to increase oral bioavailability, deliver consistent drug exposures, bypass first-pass metabolism, allow for once daily (QD) dosing, and avoid the negative food effect associated with riluzole.<sup>2,3,4</sup>

Cardiac safety assessments are critical in drug development because some compounds can delay cardiac repolarization, resulting in QT interval prolongation which may cause



potentially fatal pro-arrythmias. A Phase 1 randomized, placebo-controlled, and partially blinded study (BHV4157-108, **Figure 1**) was conducted to assess troriluzole PK and QT prolongation potential in healthy adult subjects. A primary objective was to evaluate the effect of a single dose of troriluzole on the Fridericia heart-rate corrected QT interval (QTcF) using concentration-QT (C-QT) analysis with riluzole as the analyte. A secondary objective was to determine PK of riluzole following single ascending doses of troriluzole.

## Methods

Seventy-two subjects (70 of whom were included in the cQTcF analysis due to absence of particular ECG results for 2 subjects) received single doses of either a therapeutic dose (280 mg) or supratherapeutic doses (560 or 840 mg) of troriluzole, matched placebo, or 400 mg moxifloxacin. Moxifloxacin was used as a positive control in accordance with ICH E14 Guidance (2005) that recommends a positive control to validate the study. Troriluzole and placebo were administered in a double-blind manner, and moxifloxacin was administered open-label. For the 560 and 840 mg dose groups, sentinel subjects were dosed prior to the main cohort.

#### <u>cQTcF Analysis:</u>

- The relationship between plasma concentrations of riluzole and change-from-baseline
  (Δ) QTcF was quantified using a linear mixed-effects modeling approach using data for subjects receiving troriluzole or placebo from Cohorts 1 to 3
- The predicted effect and its 2-sided 90% confidence interval (CI) for placebo-corrected ΔQTcF (ΔΔQTcF) (i.e., slope estimate × concentration + treatment effect-specific intercept) was determined at the geometric mean of the individual C<sub>max</sub> values of riluzole for subjects in each active dose group
  Assay sensitivity was determined using moxifloxacin <u>PK Methods:</u>
   Blood samples up to 72 hours after each dose of troriluzole were collected for riluzole pK analysis
   Riluzole PK parameters were calculated by non-compartmental analysis

**Figure 2:** LS Mean (90% CI) Placebo-corrected Change from Baseline in QTcF (ΔΔQTcF) after Troriluzole, Moxifloxacin, and Placebo Administration Across Time Points



Troriluzole 280 mg  $\leftarrow$  Troriluzole 560 mg  $\leftarrow$  Troriluzole 840 mg  $\leftarrow$  Moxifloxacin 400 mg LS mean and 90% CI based on a linear mixed-effects model:  $\Delta QTcF = Time + Treatment + Time \times Treatment + Baseline QTcF. Dashed line represents the <math>\Delta \Delta QTcF = 10$  msec.

# Results

#### Cardiodynamic Results (Table 1, Figure 2, Figure 3):

- Based on the C-QT analysis, a corrected QT interval (QTc) effect (ΔΔQTcF) exceeding 10 msec was excluded within the full range of observed riluzole plasma concentrations, up to ~1364 ng/mL
- Least square (LS) mean ΔΔQTcF was negative for troriluzole across most post-dose time points, ranging from -8.1 msec (at 2.5 hours post-dose in the 840 mg dose group) to 2.5 msec (at 1 hour post-dose in the 280 mg dose group), indicating no QT prolongation across the doses
- After dosing with moxifloxacin, a clear increase of LS mean ΔΔQTcF was observed with a peak value of 14.1 msec (90% CI: 11.03 to 17.15) at 3 hours post-dose, demonstrating appropriateness as a positive control

PK for Riluzole and Moxifloxacin Results (Table 1):

- Riluzole geometric mean C<sub>max</sub> ranged from 358 to 1130 ng/mL across the single doses
- Plasma concentrations of riluzole peaked at approximately 2.5-3.0 hours (T<sub>max</sub>) following troriluzole single doses
- Overall, riluzole was approximately dose proportional across 280 to 840 mg single doses

# **Table 1:** Predicted ΔΔQTcF Interval at Geometric Mean Peak Riluzole Concentrations (PK/QTc Population)

| Treatment                 | Geometric Mean (ng/mL) C <sub>max</sub><br>of Riluzole | ΔΔQTcF Estimate (msec)<br>(90% Confidence Interval) |
|---------------------------|--------------------------------------------------------|-----------------------------------------------------|
| Troriluzole 280 mg (n=10) | 358                                                    | -2.72 (-4.59, -0.84)                                |
| Troriluzole 560 mg (n=9)  | 796                                                    | -4.68 (-7.02, -2.33)                                |
| Troriluzole 840 mg (n=10) | 1130                                                   | -6.17 (-9.14, -3.19)                                |

Based on a linear mixed effects model with  $\Delta QTcF$  as the dependent variable, time-matched riluzole plasma concentration as an explanatory variate, centered baseline QTcF as an additional covariate, treatment (active = 1 or placebo = 0) and time as fixed effects, and a random intercept and slope per subject.

# **Figure 3:** Scatter Plot of Observed Riluzole Plasma Concentrations and Estimated Placebo-adjusted ΔQTcF (PK/QTc Population)



The geometric mean C<sub>max</sub> moxifloxacin was 1720 ng/mL, which occurred approximately 2.5 hours (T<sub>max</sub>) following dosing

### Conclusion

There was no clinically meaningful effect on the QTc interval following single troriluzole doses up to 840 mg (3-fold higher than the proposed therapeutic dose for treatment of OCD). Overall, this constitutes a negative thorough QT study as described in the ICH E14 clinical guidance.



Helping bring new therapies to light

Note: The solid red line with dashed red lines denotes the model-predicted mean  $\Delta\Delta$ QTcF with 90% CI, which is calculated from the equation  $\Delta\Delta$ QTcF = -1.11 (ms) - 0.0045 (ms per ng/mL) × riluzole concentration (ng/mL). The plotted points denote the pairs of observed drug plasma concentrations and estimated placebo-adjusted  $\Delta$ QTcF ( $\Delta\Delta$ QTcF) by subjects for each active dose group and placebo dose group. The individually estimated placebo-adjusted  $\Delta$ QTcF<sub>i,k</sub> ( $\Delta\Delta$ QTcF<sub>i,k</sub>) equals the individual  $\Delta$ QTcF<sub>i,k</sub> for subject<sub>i</sub> administered with active drug or placebo at time point k minus the estimation of the time effect at time point k.

### References

Pelletier JC. ACS Med Chem Lett. 2018; 9(7): 752-756;
 Groeneveld GJ. J Neurol Sci. 2001. 191(1-2):121-125;
 Liboux A. J Clin Pharmacol. 1997; 37(9): 820-827;
 Bensimon G. Expert Opin Drug Saf. 2004. 3(6): 525-534.