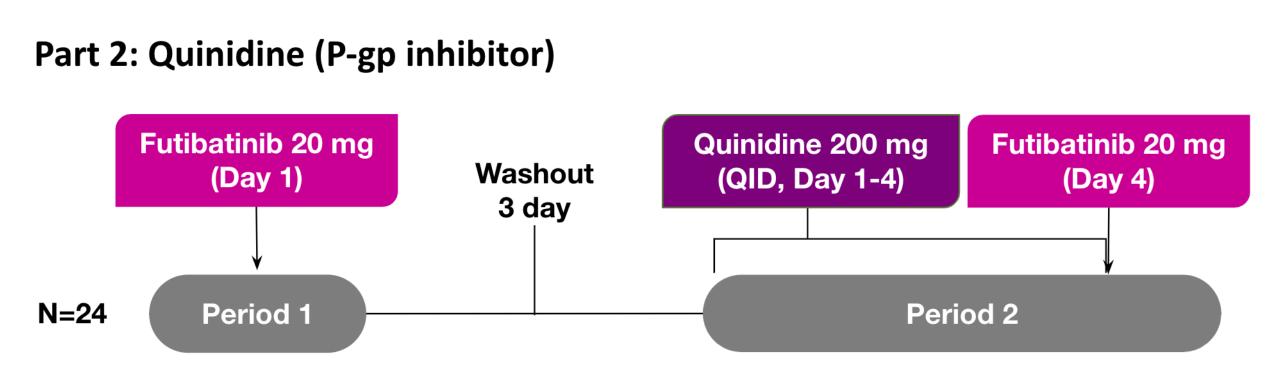
# No Clinically Meaningful Drug Interaction Between Futibatinib and Digoxin, Rosuvastatin or Quinidine

Sabina Paglialunga<sup>1</sup>, Aernout van Haarst<sup>2</sup>, Ziv Machnes<sup>3</sup>, Ling Gao<sup>4</sup>, Ikuo Yamamiya<sup>5</sup>, Amanda Long<sup>4</sup>, Michelle Valentine<sup>1</sup> and Aram Oganesian<sup>6</sup> 1. Celerion, Tempe, AZ; 2. Celerion, Belfast, UK; 3. Celerion, Montreal, Canada; 4. Taiho Pharmaceutical, Tsukuba, Japan; 6. Taiho Oncology, Pleasanton, CA.

## BACKGROUND


- Fibroblast growth factor receptor (FGFR) attenuation results in tumor growth inhibition and is an ideal target for oncologic treatment
- Futibatinib is a highly selective FGFR 1-4 tyrosine kinase inhibitor used to treat advanced or metastatic intrahepatic cholangiocarcinoma harboring fibroblast growth factor receptor 2 (FGFR2) gene fusions or other rearrangements [1]
- In vitro studies suggest that futibatinib is a substrate and inhibitor of P-glycoprotein (P-gp) and breast cancer resistant protein (BCRP)
- Co-administration of futibatinib with itraconazole, a strong cytochrome P450 3A (CYP3A) inhibitor, resulted in a ~50% increase in futibatinib exposure, suggesting futibatinib is primarily metabolized by CYP3A [2]
- Itraconazole is also recognized as a P-gp and BCRP inhibitor [3], however the extent to which transporter inhibition contributed to the effect on futibatinib exposure remains to be elucidated
- Therefore, a drug-drug interaction (DDI) study with substrates of P-gp (digoxin) and BCRP (rosuvastatin) and a P-gp inhibitor (quinidine) was performed to investigate the effect of futibatinib on these drug transporters

## METHODS


- An open-label, fixed-sequence, 2-part, 2-period DDI study (Figure 1)
- Part 1: Drug cocktail = 0.25 mg Digoxin + 10 mg Rosuvastatin and 20 mg Futibatinib
- Part 2: 20 mg Futibatinib and 200 mg Quinidine Sulfate
- 44 healthy volunteer participants (n=20 Part 1, n=24 Part 2)
- Plasma and urine (digoxin only) pharmacokinetic (PK) parameters were assessed with standard equivalence statistical analyses
- The geometric mean ratios (GMRs) and associated 90% confidence intervals (CIs) were estimated based on the least square means from the analysis of variance and bioequivalence limits were set at 80%–125%

## Figure 1: Transporter DDI Study Design

Part 1: Digoxin (P-gp substrate) + Rosuvastatin (BCRP substrate) Cocktail



Cocktail = Digoxin 0.25 mg + Rosuvastatin 10 mg



QID = four times daily

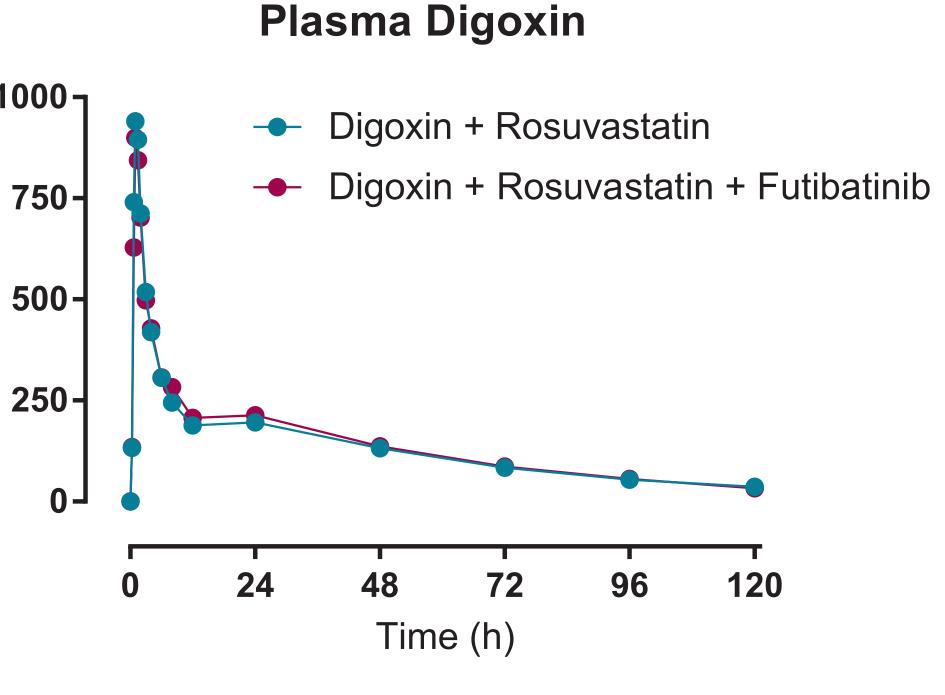
## Parameters

- Age, years [me
- Males / Female
- Race [n (%)]
- Black or Af • White
- Ethnicity [n (%) Hispanic of the second se
- Not Hispar
- Body weight,
- BMI, kg/m<sup>2</sup> [m<sup>2</sup>

BMI, body mass index; SD, standard deviation.

## RESULTS

## Part 1: Futibatinib Had Minimal Effects on the Digoxin + **Rosuvastatin Cocktail Drug Exposures**


**Digoxin Accumulation** 

1000 т 250

### Table 1. Participant Demographics

|                                    | Part 1 (n=20)     | Part 2 (n=24)     | Total (n=44)       |
|------------------------------------|-------------------|-------------------|--------------------|
| nedian (range)]                    | 37.5 (21–53)      | 49.0 (20–55)      | 39.5 (20–55)       |
| ales [n]                           | 13 / 7            | 16 / 8            | 29 / 15            |
| African American                   | 1 (5)<br>19 (95)  | 1 (4)<br>23 (96)  | 2 (5)<br>42 (95)   |
| %)]<br>or Latino<br>anic or Latino | 14 (70)<br>6 (30) | 19 (79)<br>5 (21) | 33 (75)<br>11 (25) |
| , kg [mean (SD)]                   | 82.1 (14.80)      | 76.4 (13.03)      | 78.9 (13.98)       |
| nean (SD)]                         | 27.6 (2.42)       | 26.4 (3.61)       | 26.9 (3.15)        |
|                                    |                   |                   |                    |

Figure 2. Plasma Digoxin Concentration Time Profile and Urine





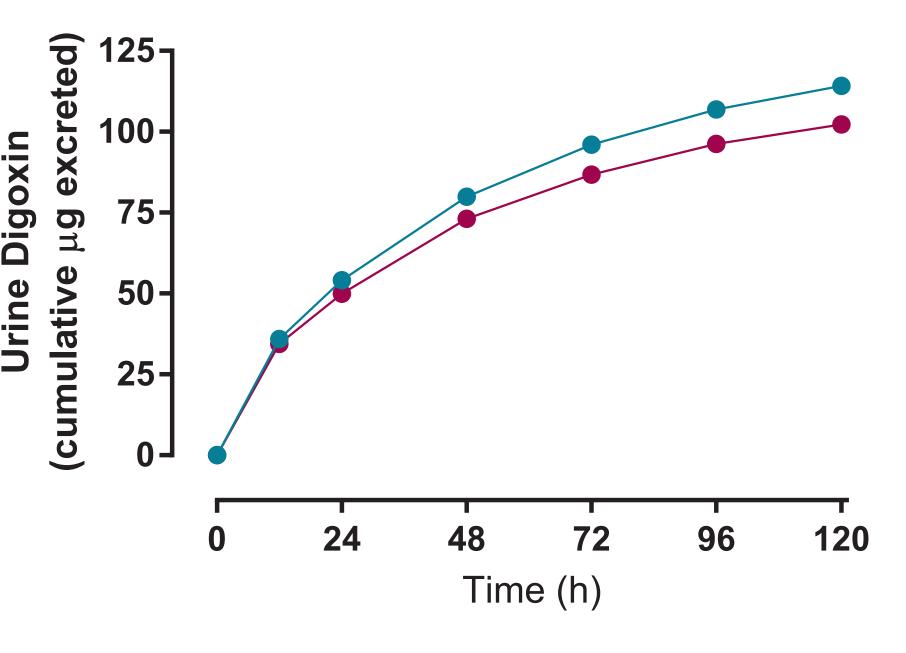
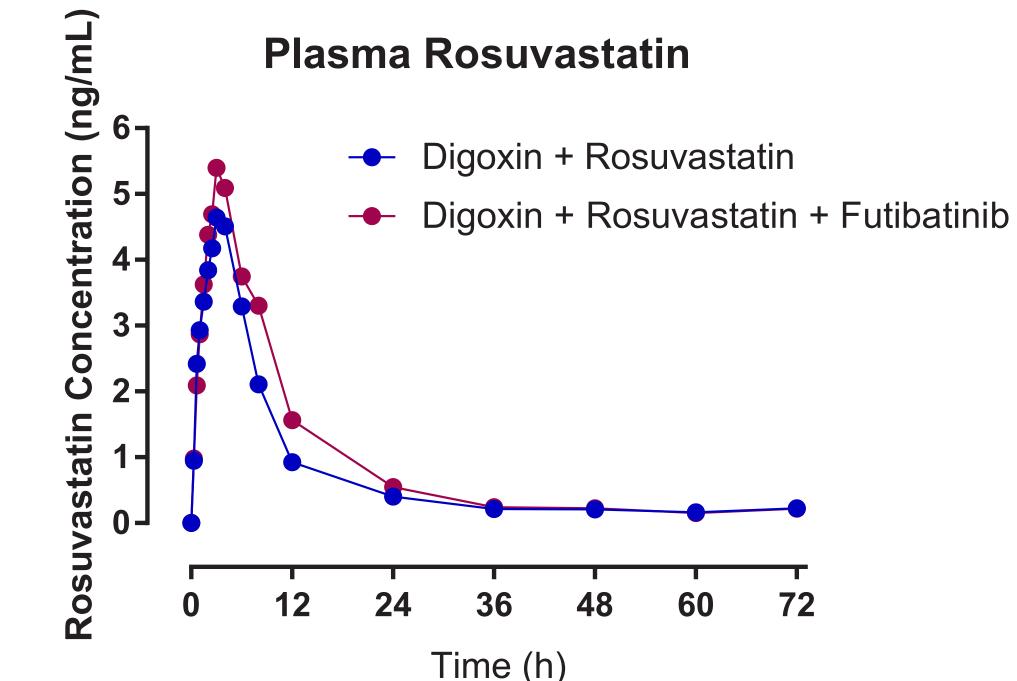
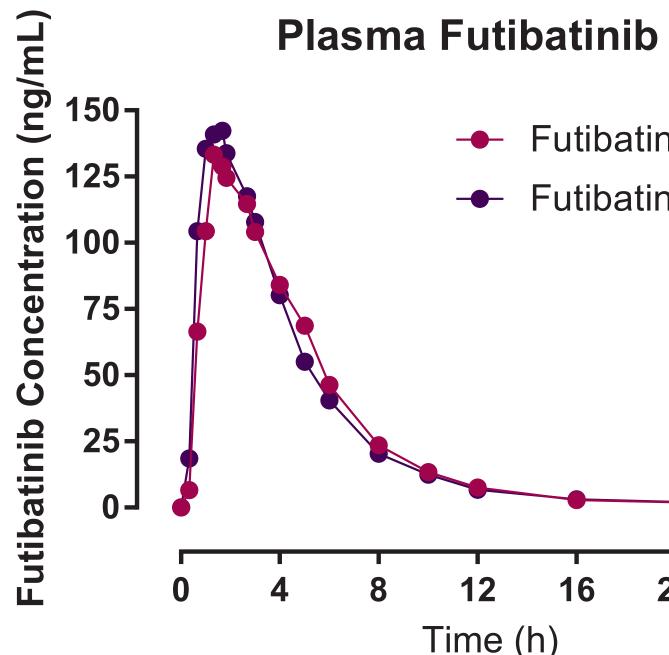




Figure 3. Plasma Rosuvastatin Concentration Time Profile




## Table 2. Digoxin and Rosuvastatin PK Parameters Without or With Futibatinib

| PK Parameter                    | Digoxin +<br>Rosuvastatin | Digoxin +<br>Rosuvastatin +<br>Futibatinib | GMR⁺, %<br>(90% CI) |
|---------------------------------|---------------------------|--------------------------------------------|---------------------|
|                                 | Plasma                    | Digoxin                                    |                     |
| AUC <sub>0-120</sub> , pg*hr/mL | 15,640 (26.0)             | 16,240 (29.3)                              | 103.9 (94.5–114.2)  |
| AUC <sub>inf</sub> , pg*hr/mL   | 17,670 (26.6)             | 17,950 (29.9) <sup>a</sup>                 | 100.2 (90.8–110.5)  |
| C <sub>max</sub> , pg/mL        | 1003 (38.0)               | 953.3 (45.1)                               | 95.1 (81.1–111.5)   |
|                                 | Urine                     | Digoxin                                    |                     |
| Cumulative Ae, ug               | 114.2 (20.8)              | 102.2 (24.9)                               | -                   |
| CLr, L/hr                       | 7.31 (1.33)               | 6.49 (1.99)                                | 87.1 (80.8–93.9)    |
|                                 | Plasma Ro                 | osuvastatin                                |                     |
| AUC <sub>0-72</sub> , ng*hr/mL  | 45.9 (53.4) <sup>a</sup>  | 53.9 (54.8)                                | 118.8 (107.9–130.7) |
| AUC <sub>inf</sub> , ng*hr/mL   | 46.9 (56.7) <sup>b</sup>  | 54.7 (56.4)                                | 113.5 (102.6–125.5) |
| C <sub>max</sub> , ng/mL        | 4.4 (61.4)                | 4.8 (65.5)                                 | 110.2 (97.3–124.8)  |

Data presented as geometric mean (geometric CV%) for C<sub>max</sub> and AUC; arithmetic mean (SD) for urine parameters. <sup>‡</sup>Only participants for whom PK parameters were determined for both period 1 and period 2 were included in the comparison. <sup>a</sup>Data available for 19 participants. <sup>b</sup>Data available for 18 participants. Ae, amount excreted; AUC, area under the concentration vtime curve; C<sub>max</sub>, maximal concentration; CLr, renal clearance; CV, coefficient of variation; SD, standard deviation.

## Part 2: No Clinically Relevant Increase in Futibatinib **Following Quinidine Co-administration**

## Figure 4. Plasma Futibatinib Concentration Time Profile



- Futibatinib
- Futibatinib + Quinidine

# 20 24

## Table 3. Futibatinib PK Parameters Alone and With Quinidine

| PK Param                  | eter   | Futibatinib<br>(n = 24) | Futibatinib +<br>Quinidine (n = 15) | GN<br>(90 |
|---------------------------|--------|-------------------------|-------------------------------------|-----------|
| AUC <sub>0-24</sub> , pg  | *hr/mL | 579.5 (66.1)            | 622.8 (41.4)                        | 116.4 (   |
| AUC <sub>inf</sub> , pg*h | nr/mL  | 581.5 (66.3)            | 627.0 (41.6)                        | 117.0 (9  |
| C <sub>max</sub> , pg/ml  | -      | 151.4 (53.5)            | 161.1 (48.4)                        | 108.0 (   |

Data presented as geometric mean (geometric CV%) for C<sub>max</sub> and AUC. <sup>‡</sup> Only participants for whom PK parameters were determined for both period 1 and period 2 were included in the comparison. AUC, area under the concentration time curve; C<sub>max</sub>, maximal concentration; CV, coefficient of variation; SD, standard deviation.

## **Futibatinib Was Well Tolerated in Healthy Adult Participants** When Administered With and Without Digoxin and **Rosuvastatin or Quinidine**

- In Part 1, the most common adverse event (AE) was diarrhea, reported by 80% of participants. All diarrhea events resolved without the need for dose modifications
- Hyperphosphatemia, a known on-target AE of FGFR inhibitors [4,5], was experienced by 75% of subjects yet was reversible upon completion of futibatinib dosing
- In Part 2, nine participants discontinued treatment due to prolonged ECG QT following quinidine administration in Period 1
- These AEs were considered related to quinidine treatment, and all resolved upon discontinuation. Quinidine, an anti-malaria drug, is also a substrate of cardiac channels known to lengthen the QT internal on an ECG [6]

 Table 4. Most Frequent Treatment Emergent AEs (TEAEs) in Part 1 and Part 2

| Adverse Events             | Part 1*   |          | Par       |  |
|----------------------------|-----------|----------|-----------|--|
| TEAEs, n (%)               | Any Grade | Grade ≥3 | Any Grade |  |
| Any TEAE                   | 19 (95)   | 4 (20)   | 15 (63)   |  |
| Diarrhea                   | 16 (80)   | 4 (20)   | 3 (13)    |  |
| Blood phosphorus increased | 15 (75)   | 0        | 0         |  |
| Abdominal pain             | 6 (30)    | 0        | 1 (4)     |  |
| Dry mouth                  | 5 (25)    | 0        | 0         |  |
| Abdominal discomfort       | 4 (20)    | 0        | 0         |  |
| Constipation               | 4 (20)    | 0        | 0         |  |
| Nausea                     | 3 (15)    | 0        | 2 (8)     |  |
| Back pain                  | 3 (15)    | 0        | 0         |  |
| Dysuria                    | 3 (15)    | 0        | 0         |  |
| ECG QT prolonged           | 0         | 0        | 9 (38)    |  |

\*TEAEs reported in at least three participants in either part of the study. ECG, electrocardiogram.

Time (h)

## TAIHO ONCOLOGY

CONCLUSION

Futibatinib had no impact on plasma and urine digoxin (a P-gp substrate) exposure and no clinically relevant effect on plasma rosuvastatin (a BCRP substrate) exposure, suggesting lack of clinically meaningful effects on these drug transporters

celerion

Translating Science to

Medicine

- Co-administration with quinidine (a P-gp inhibitor) revealed that the contribution of P-gp to futibatinib absorption appeared to be negligible, and clinical perpetrators of P-gp are unlikely to have a clinically meaningful effect on the bioavailability of futibatinib
- Futibatinib, when administered either alone or with digoxin + rosuvastatin or quinidine, was safe and well tolerated in healthy adult subjects
- Altogether, these findings support the concomitant administration of futibatinib with other drugs that are P-gp and BCRP substrates and/or P-gp inhibitors

## REFERENCES

- . U.S. Food and Drug Administration (FDA). LYTGOBI® (futibatinib) tablets, for oral use. US prescribing information. Updated September 2022. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2022/214801Orig1s000lbledt.pdf
- Yamamiya I, et al. Evaluation of the cytochrome P450 3A and P-glycoprotein drug-drug interaction potential of futibatinib. Clin Pharmacol Drug Dev. 2023;12:966-978.
- International Council for Harmonisation of Technical Requirements for Pharmaceutical for Human Use (ICH). Drug Interaction Studies M12. Updated May 2024. https://database.ich.org/sites/default/files/ICH\_M12\_Step4\_Guideline\_2024\_0521\_0.pdf
- Kommalapati A, et al. FGFR inhibitors in oncology: insight on the management of toxicities in clinical practice. Cancers (Basel). 2021;13:2968.
- Meric-Bernstam F, et al. Safety Profile and Adverse Event Management for Futibatinib, an Irreversible FGFR1-4 Inhibitor: Pooled Safety analysis of 469 patients. Clin Cancer Res. 2024; Epub ahead of print.
- Wiśniowska B, et al. Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials. BMC Pharmacol Toxicol. 2016;17:12.



Sabina Paglialunga, PhD Senior Director, Scientific Affairs sabina.paglialunga@celerion.com

**Acknowledgments:** The authors thank the participants who took part in the trial, as well as the Celerion research staff who assisted this study.

**Disclosures:** This study was funded by Taiho Oncology, Inc.



## **Read the Full Paper:**

Long A, Yamamiya I,Valentine M, et al. A phase I drugdrug interaction study to assess the effect of futibatinib on P-gp and BCRP substrates and of P-gp inhibition on the pharmacokinetics of futibatinib. Cli Transl Sci. 2024;17:e70012. doi:10.1111/cts.70012

## **MR,**<sup>‡</sup> % 90% CI)

- (95.4–142.1) (96.0–142.7)
- (90.9–128.3)

rt 2\*

| Grade ≥3 |
|----------|
| 9 (38)   |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 0        |
| 9 (38)   |