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There is a growing interest in adopting high content (HC) image-based approaches for target and drug discovery. Cell Painting is an example of such a HC assay that is quickly gaining traction. 
CellProfiler is the most widely used image analysis tool for Cell Painting1, but it requires a significant level of expertise. To address this challenge, we used a robust deep learning-based, 
computer vision application, IKOSA AI2, to create an image analysis model for Cell Painting. IKOSA AI is a web-browser driven tool, developed by KML Vision, for the generation of new deep 
learning models that does not require any coding knowledge. To validate the IKOSA AI model and compare it to the JUMP-CP data3, we used StratoMineR™ 4. This software is a web-based 
application that guides biologist through a best-practices and intuitive data analytics workflow. 

Our results demonstrate that the IKOSA AI model is reproducible and yields consistent 
outcomes with the publicly available JUMP-CP numeric data. Further investigation is 
currently underway on how cytoplasm features contribute to the phenotypic diversity of the 
Cell Painting assay. The combination of IKOSA AI and StratoMineR represent an accessible, 
unbiased, fully-automated and cloud-based solution that does not require computer 
programming, delivering comparable results to the current State of the Art. Alternative to 
CellProfiler manual process, our approach to Cell Painting, from image analysis to 
downstream data science, greatly accelerates novel biological insights from high content 
data in a holistic and reproducible fashion.  

1. Bray MA et al. Nat Protoc. 2016 Sep; 11(9): 1757-1774.
2. KML Vision GmbH, IKOSA (software), Graz, Austria, software available at 

https://app.ikosa.ai
3. We used the dataset cpg0000-jump-pilot, available from the Cell Painting Gallery on the 

Registry of Open Data on AWS (https://registry.opendata.aws/cellpainting-gallery/)
4. Omta W et al.  Assay Drug Dev Technol. 2016; 14(8): 439-452.

Methods Results: Comparison to Original JUMP-CP Data

Figure 3: Raw data from IKOSA AI and JUMP-CP. We used the StratoMineR™ Quality 
Control interactive data visualization module to get an overview of the data (n=5 plates per 
source). We used the Merge Metadata module to combine an annotation file with the raw 
data. This supports inclusion of details about the experiment (compound names, reagent 
classes, etc) which results in more plotting options. Plotted here are scatter plots of two 
features out of the 2000 features present after Feature Selection. 

Results: IKOSA AI Model

Model training and testing
● n=2780 images, 1080x1080 px
● (2208 training, 572 test)
● Feature Extraction: 1832 

features were measured from 
each object (Cells and Nuclei) 

Image dataset
● Pilot JUMP-CP images
● A549 and U2OS
● 5 fluorescent and 3 

brightfield channels
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Figure 1: IKOSA AI and StratoMineR™ workflow. A) A deep neural network was trained in 
IKOSA AI with the images described above. The model was then used to analyze 5 
compound plates. B) The numeric data extracted by IKOSA AI was uploaded to 
StratoMineR™ for downstream data analytics. 
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Figure 2: IKOSA AI Segmentation Performance. The segmentation performance was 
evaluated using the test images shown in Figure 1A. This resulted in 
precision/recall/average precision scores of 0.97/0.89/0.86 and 0.98/0.94/0.92 for cell and 
nucleus instances respectively. The ground truth labels from CellProfiler were generated 
with the masks available in the Cell Painting Gallery.

Figure 4: Dimensionality Reduction, Principal Component Analysis (PCA). Due to the large 
number of features, we performed PCA to reduce the computational load and redundancy, 
and reveal the biology behind the data. Shown in the graph are the first 3 components for 
each data source, data points are colored by compound name (n=5 plates per source).

Figure 5: Comparison between IKOSA AI and JUMP-CP. Euclidean distance scores from the 
negative control median to all the wells (top graphs) and distance scores to hits only, p<0.05 
(bottom graphs). IKOSA AI extracts measurements from cells and nuclei, while the JUMP-CP 
data contains features from cells, nuclei and cytoplasm. A) JUMP-CP data with all features 
(including Cytoplasm) and IKOSA AI data. B) JUMP-CP data excluding Cytoplasm features 
and IKOSA AI data. 
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