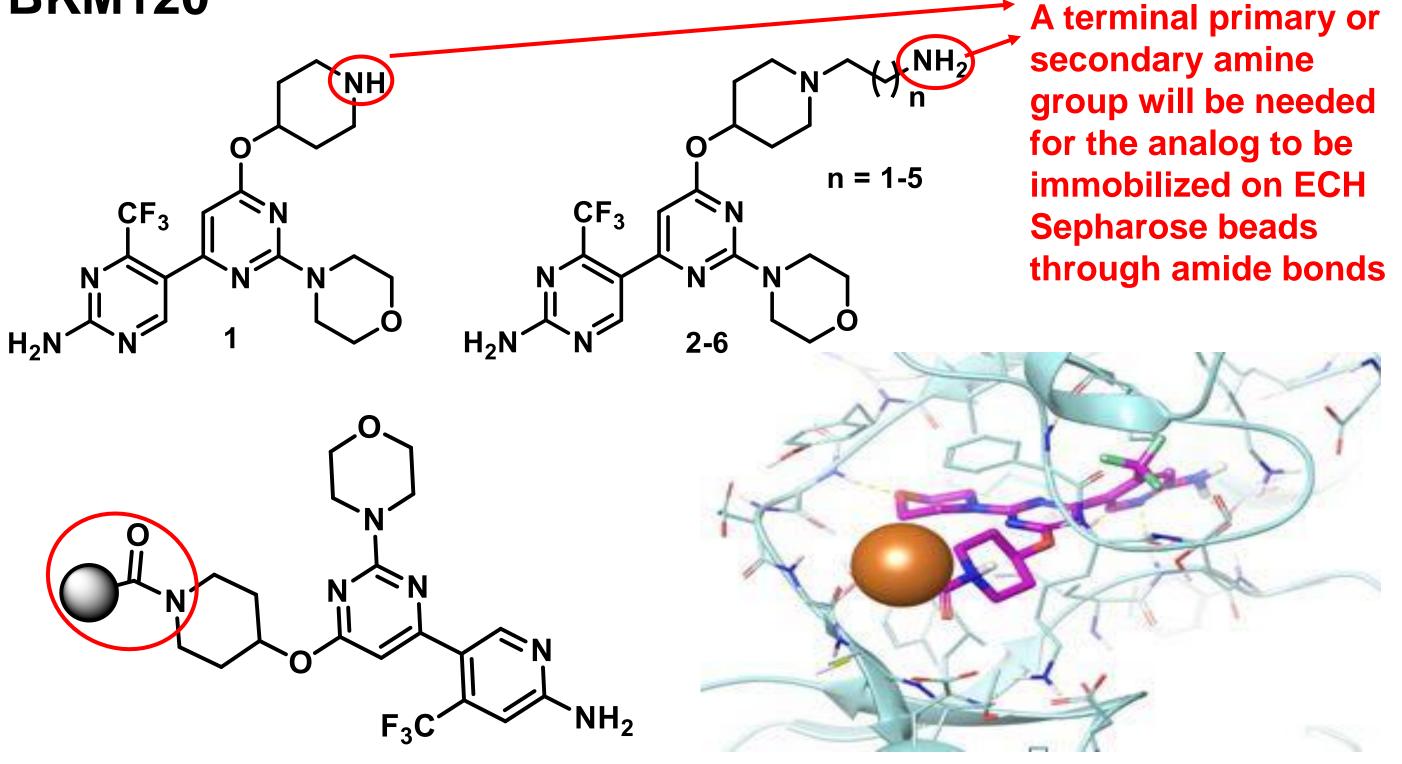

Xin Chen^{1*}, Elfreda Dzukey¹, Tyler Hall¹, Alexis Davis¹, Jessica Sharrow¹, Jaylen Barnes¹, J. Felix Olivares² and Gary L. Johnson² ¹Department of Pharmaceutical & Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, ²Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599

ABSTRACT

- With MIB/MS techniques, kinome activation profiles of multiple tumors can be compared or global changes in kinase activation can be determined after drug treatment. But the coverage of kinome by immobilized inhibitor beads is still not complete because of the lack of suitable affinity probes for certain kinases such as PI3Ks.
- With the PI3K (PI3K-AKT-MTOR) pathway being probably the most commonly activated pathway in human cancers, and PIK3CA being one of the most frequently mutated genes in cancer, there is a strong rationale to therapeutically target the PI3K/AKT/mTOR pathway in human cancer.
- To include the important PI3Ks in the kinome mapping using MIB/MS techniques, a chemical affinity probe targeting PI3Ks, including the mutated PI3Ks has been developed in this study.
- The newly developed PI3K chemical affinity probe: 1) had similar activity towards PI3Ks and other kinases as BKM120; 2) could capture PI3Ks and their regulatory subunits from a variety of breast cancer cell lines and PDXs; 3) exhibited competitive capture of PI3Ks from SKBR3 cells with IC₅₀ values calculated from dose-dependent curves for BYL719 and BKM120 comparable to the published values; 4) demonstrated capacity to capture PIK3CA H1047R mutant form in bioengineered SKBR3 cells harboring H1047R mutant and from A375 mutated cell with H1047R mutant.



Development of PI3K chemical affinity probe based on NVP-BKM120

- BMK120 is selective pan-class II PI3K inhibitor with IC₅₀ values of 52/166/116/262 nM for p110 $\alpha/\beta/\delta/\gamma$ in cell-free assays respectively.
- BKM120 also has similar activity towards the most common P110 α mutants E545K and H1047R with IC_{50} values of 99 nM and 58 nM respectively.
- BKM120 exhibits lower potency against class III and class IV PI3Ks including mTOR.
- BKM120 structural template is amiable for multi-dimensional modification.
- Previous SAR findings and co-crystal structure of BKM120 with PIK3CA approved that BKM120 does tolerate chemical modification at C4 position of the pyrimidine core and retain activity against PI3Ks.

METHODS & RESULTS

1. Design of PI3K chemical affinity probe based on NVP-**BKM120**

We designed a series of qualified BKM120 analogs and evaluated them by computer docking to make sure the chemical probe, after linking to ECH Sepharose beads, maintains high binding affinity towards PI3K. The best compounds were synthesized and tested in vitro for its capability to capture and quantify PI3Ks.

New Chemical Affinity Probe for Quantitative Proteomic Profiling of PI3Ks

2. Synthesis of PI3K Chemical Probe

ECH Sepharose

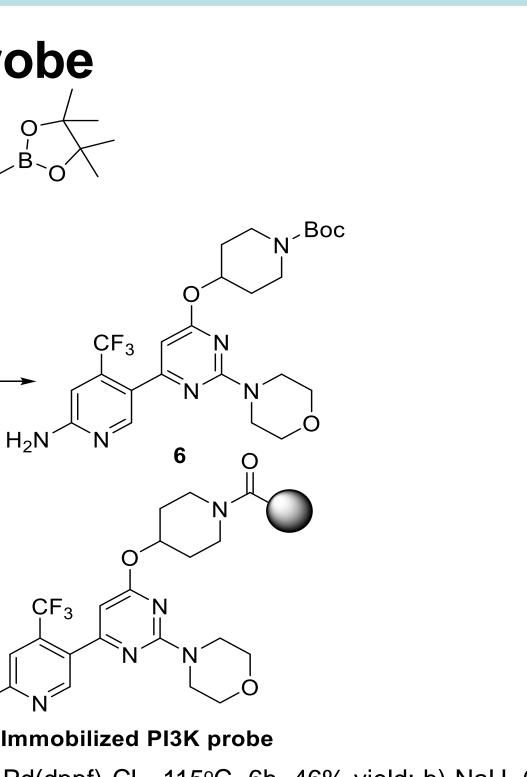
Reagents and conditions: a) Bis(pinacolato) diboron, K₂CO₃, dioxane, Pd(dppf)₂Cl₂, 115°C, 6h, 46% yield; b) NaH, 0°Cr.t., overnight, 77% yield; c) $Pd(dppf)_2Cl_2$, K_2CO_3 , $DME/H_2O = 4:1$, microwave, $120^{\circ}C$, 30 min., 72% yield; d) DCM, TFA, r.t., 1h., 92% yield; e) EDC, DMF/EtOH = 1:1, overnight.

3. New PI3K beads can capture PI3Ks from various cancer cell lines

From HCC1806 cells				From BT474 cells			
Kinase	Peptide	Unique Peptide	LFQ intensity	Kinase	Peptide	Unique Peptide	LFQ intensity
PI4KA	18	18	1.66E+08	PI4KA	29	29	8.32E+08
PK3CA	15	15	8.41E+08	PK3CA	32	32	5.22E+09
PK3CB	12	12	3.42E+08	PK3CB	22	21	1.95E+09
PIK3C3	6	6	22315000	PIK3C3	1	1	67523000
PIK3R1	18	13	5.27E+08	PIK3R1	17	13	1.18E+09
PIK3R2	22	20	8.39E+08	PIK3R2	19	27	4.86E+09
PIK3R3	13	9	2.72E+08	PIK3R3	20	25	2.16E+09
PIK3R4	5	5	2256400	PIK3R4	2	2	18756000

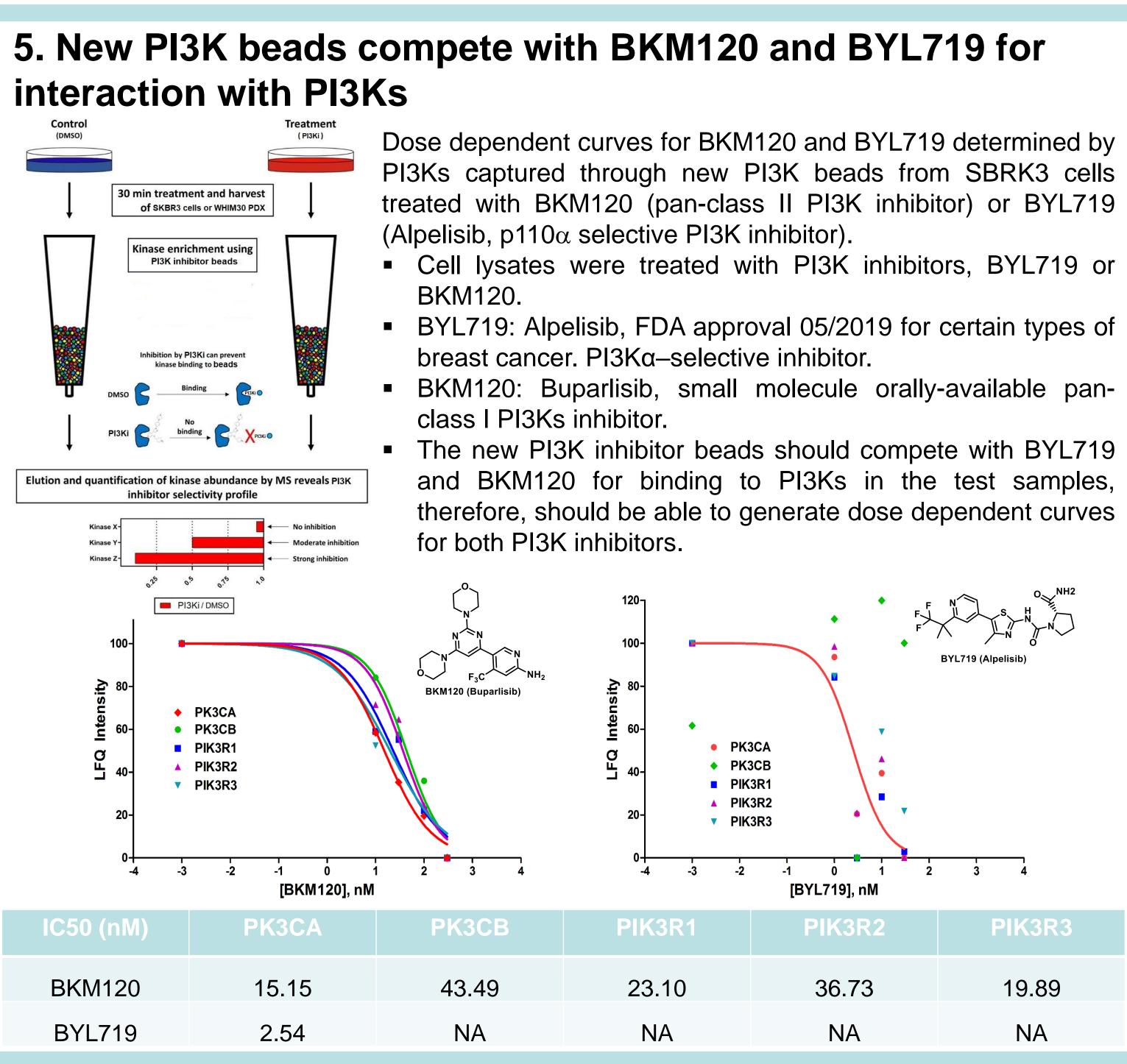
From SKBR3 cells

Kina	se	Peptide	Unique Peptide	LFQ intensity		
PI4k	(A	25	25	2.03E+08		
PK30	CA	36	36	3.6E+09		
PK30	СВ	16	15	4.79E+08		
PK30	D	15	14	4.67E+08		
PIK3	R1	32	23	3.01E+09		
PIK3	R2	32	29	1.02E+09		
PIK3	R3	23	18	1.1E+09		


4. New PI3K beads can capture PI3Ks from various PDXs From WHIM2 From WHIM12

Kinase	Peptide	Unique Peptide	LFQ intensity	Kinase	Peptide	Unique Peptide	LFQ intensity
PI4KA	14	14	63687000	PI4KA	17	17	95110000
PK3CA	21	3	76957000	PK3CA	21	3	22630000
PK3CB	18	8	2.38E+08	PK3CB	19	8	1.54E+08
PK3CD	17	4	39064000	PK3CD	21	8	2.74E+08
PIK3R1	28	14	2.75E+08	PK3CG	2	2	4484900
PIK3R2	32	6	1.27E+08	PIK3R1	29	15	1.63E+08
PIK3R3	10	6	68908000	PIK3R2	33	7	5.19E+08
PIK3R4	16	4	23149000	PIK3R3	8	4	15545000

From WHIM30


Kinase	Peptide	Unique Peptide	LFQ intensity
PI4KA	13	13	56660000
PK3CA	27	4	2.29E+08
PK3CB	18	7	1.97E+08
PK3CD	19	5	76097000
PIK3R1	30	16	3.48E+08
PIK3R2	33	6	4.11E+08
PIK3R3	11	7	1.85E+08
PIK3R4	11	2	4895400

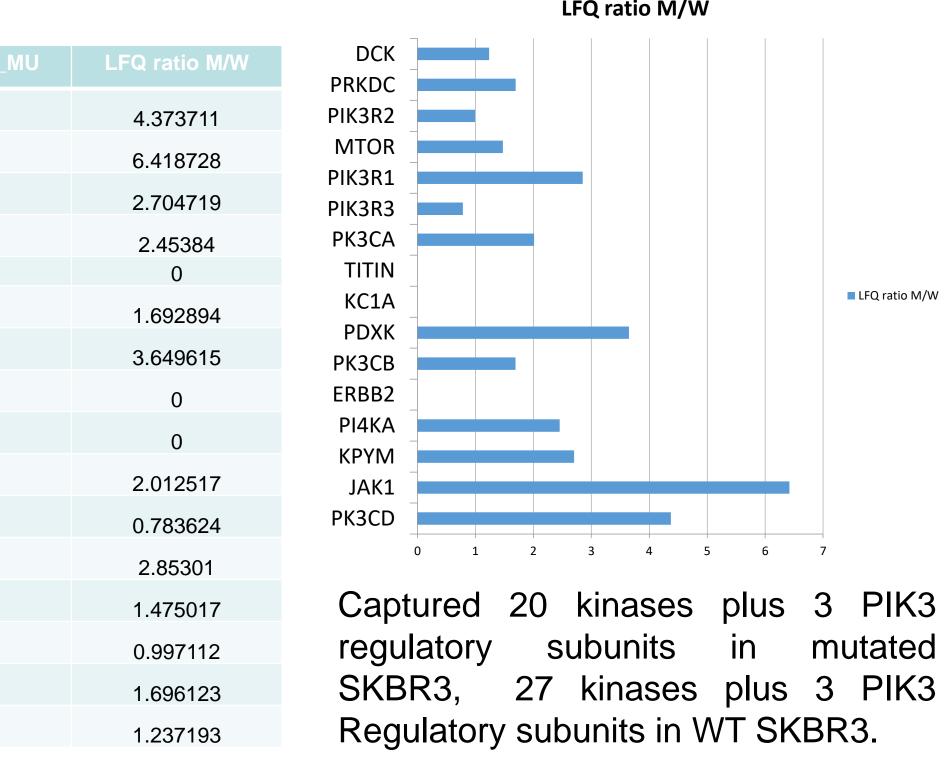
- The new PI3K inhibitor beads have been approved to be able to selectively and reliably capture PI3Ks and their regulatory subunits from breast cancer cell lines and PDX tumors.
- About 30 other kinases were captured by the new PI3K beads including ATR, PRKDC, DCK, MTOR, EBB2, ERBB3, INSR, JAK1 etc.

From all three breast cancer cell lines, the new PI3K beads can selectively and reliably capture PIK3CA, PIK3CB together with the regulatory subunits.

> From all three breast cancer PDX tumors, the new PI3K beads inhibitor can selectively reliably and capture PIK3CA, PIK3CB, PIK3CD and the regulatory subunits.

6. New PI3K beads can capture PIK3CA H1047R from mutated SKBR3 cells LFQ ratio M/W

Kinase	LFQ intensity_WT	LFQ intensity_
PK3CD	1.93E+08	8.44E+08
JAK1	1.47E+08	9.42E+08
KPYM	12588000	34047000
PI4KA	55297000	1.36E+08
ERBB2	24535000	0
PK3CB	1.57E+08	2.66E+08
PDXK	50493000	1.84E+08
KC1A	8422300	0
TITIN	56649000	0
PK3CA	6.01E+08	1.21E+09
PIK3R3	1.1E+09	8.61E+08
PIK3R1	1.02E+09	2.91E+09
MTOR	1.89E+09	2.78E+09
PIK3R2	3.01E+09	3E+09
PRKDC	4.5E+08	7.63E+08
DCK	5.14E+09	6.35E+09


CONCLUSION

- profiling of wide type and mutant PI3Ks.
- biological effects.
- medicine for cancer patients.

Funding Support: NCI funding for Dr. Johnson and AACP New Investigator Award for Dr. Chen are highly appreciated.

DINC

SCHOOL OF MEDICINE

We have developed a chemical affinity probe for quantitative proteomic

The new PI3K inhibitor beads not only can expand the kinome coverage of MIB-MS, but also can help analyze the dynamic changes of PI3Ks in various cancers and identify possible binding partners for desired/undesired

The results obtained may also provide guidance in formulating precision