

Some Fish Oil with your Fluoxetine? Possibly practical results from a big

bioinformatics project

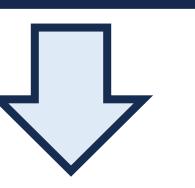
Read the preprint! (includes all citations)

Gene expression signatures of fluoxetine response: systematic review and meta-analyses

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University

Introduction

- Genomics (and other "omics") may help a provider select the best antidepressant for a patient.
- However, individual studies have struggled to identify genetic markers of response.



Generated with Leonardo.AI. Prompt: "An abstract complex genetic and the transcriptomic signatures associated with major depressive disorder"

Objective: Synthesize gene expression studies to identify biological pathways distinguishing response to fluoxetine.

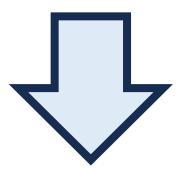
Systematic Review

Gene Expression **Omnibus Database** (>200,000 Datasets)

74 Datasets

Screened

Keyword Search:

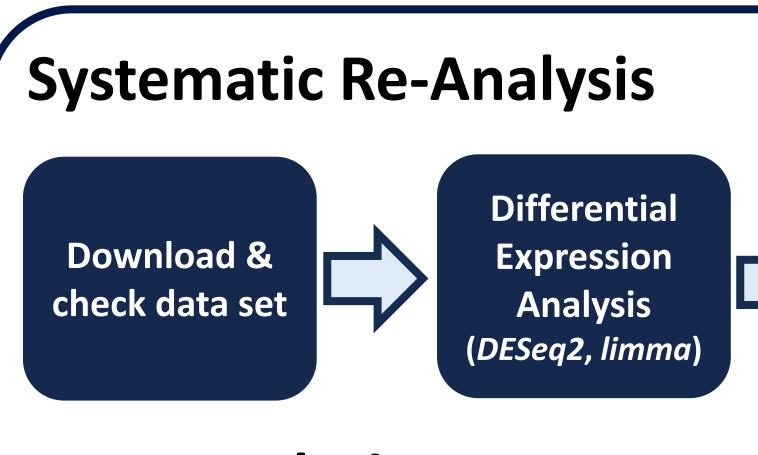

"fluoxetine" OR "SSRI" OR "selective serotonin reuptake inhibitor" Filters:

Study Type = RNA-Seq or Microarray Entry Type = Series (full dataset) Organism = Human, Rat, or Mouse

Exclusion Criteria:

- Not relevant tissue

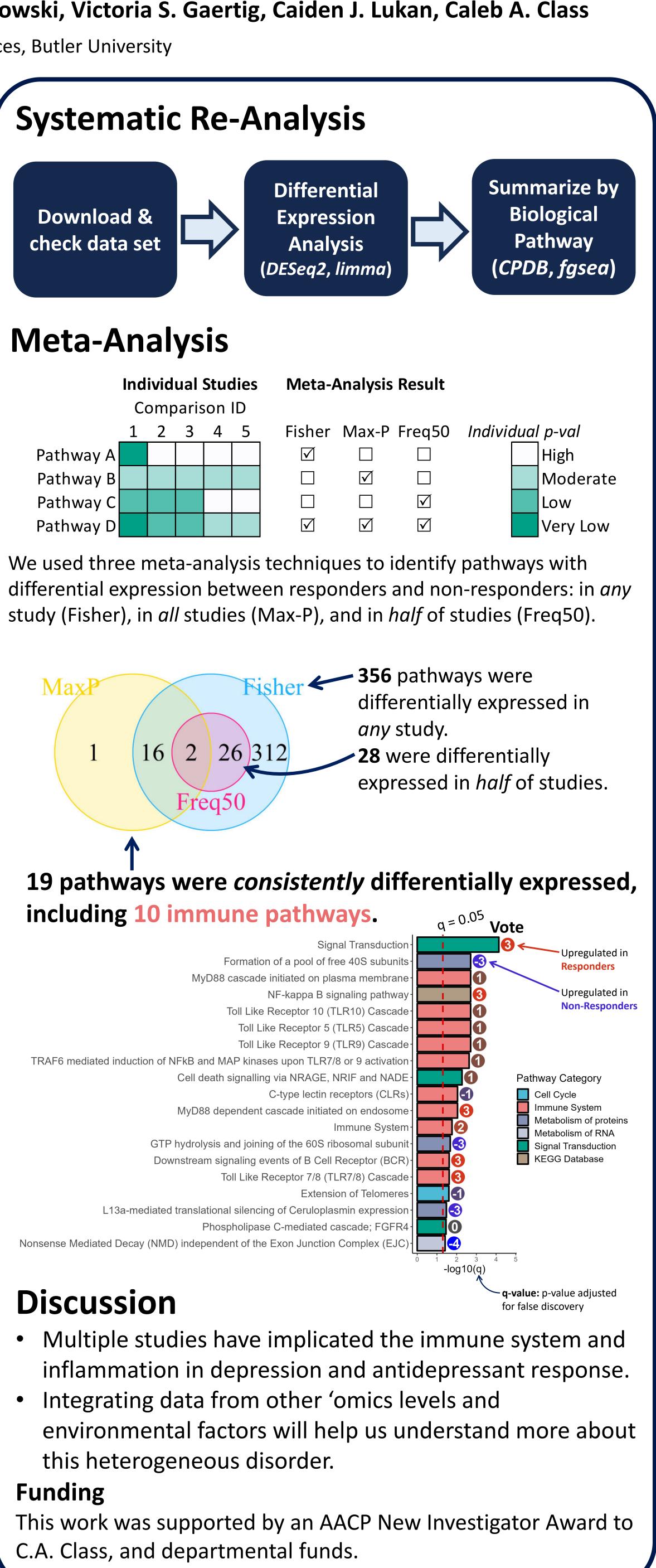
20 Datasets Included


Six datasets included in synthesis for fluoxetine response

GEO Series ID	Platform	Organism	Tissue(s)	Stress Method / Diagnosis	Fluoxetine Treatment	Drug Response Determination
GSE83386	Microarray	Human	Lymphoblastoid cell lines	Major Depressive Disorder	3-weeks 0.5 μg/mL	Hamilton Depression Rating Scale
GSE28644	Microarray	Mouse	Cortex	N/A	3-weeks 18 mg/kg/day	Open-field test
GSE43261	Microarray	Mouse	Dorsal dentate gyrus, Ventral dentate gyrus	Corticosterone	>1-week 160 mg/L in drinking water	Novelty suppressed feeding, Forced swim test
GSE84183	Microarray	Mouse	Anterior cingulate cortex, Dentate gyrus	7-weeks unpredictable chronic mild stress	5-weeks 120 mg/L in drinking water	Coat state measurement
GSE84184	Microarray	Mouse	Whole blood	7-weeks unpredictable chronic mild stress	5-weeks 120 mg/L in drinking water	Coat state measurement
GSE202172	RNA-Seq	Mouse	S100a10 cortical cells	7-weeks single-housing	3-weeks 167 mg/L in drinking water	Homecage time spent ir shelter zone


David G. Cooper, J. Paige Cowden, Parker A. Stanley, Jack T. Karbowski, Victoria S. Gaertig, Caiden J. Lukan, Caleb A. Class

 Not Depression/Anxiety • No fluoxetine treatment < 3 samples per group


Subset of data providing clinical (human) or behavioral (mouse) response determination

Meta-Analysis

Fisher	Max-P	Freq
\checkmark		
	\checkmark	
		\checkmark
\checkmark	\checkmark	\checkmark

including 10 immune pathways.

Signal Transduction
Formation of a pool of free 40S subunits
MyD88 cascade initiated on plasma membrane-
NF-kappa B signaling pathway-
Toll Like Receptor 10 (TLR10) Cascade
Toll Like Receptor 5 (TLR5) Cascade
Toll Like Receptor 9 (TLR9) Cascade
TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation
Cell death signalling via NRAGE, NRIF and NADE
C-type lectin receptors (CLRs)-
MyD88 dependent cascade initiated on endosome-
Immune System-
GTP hydrolysis and joining of the 60S ribosomal subunit-
Downstream signaling events of B Cell Receptor (BCR)
Toll Like Receptor 7/8 (TLR7/8) Cascade
Extension of Telomeres-
L13a-mediated translational silencing of Ceruloplasmin expression
Phospholipase C-mediated cascade; FGFR4-
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)

Discussion

- this heterogeneous disorder.

Funding

C.A. Class, and departmental funds.