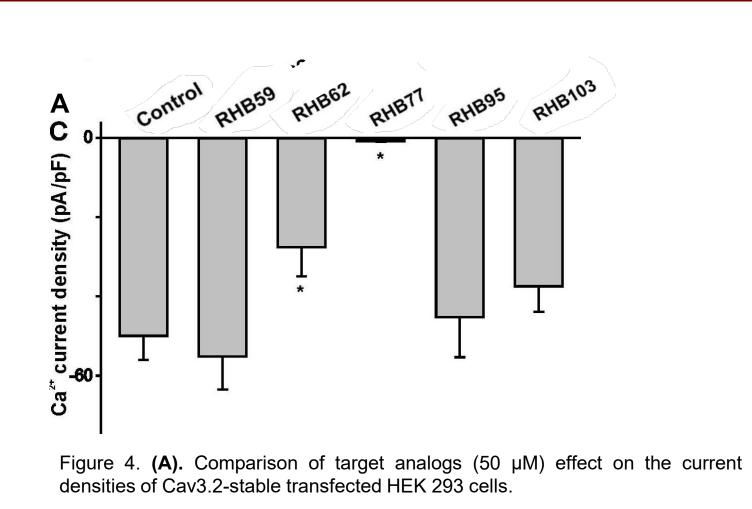
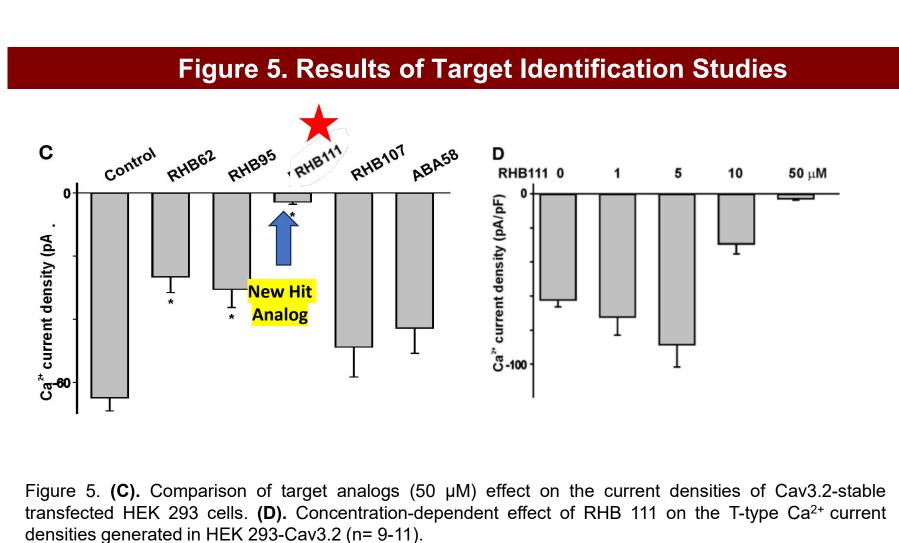
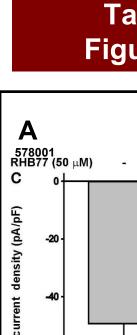


The Drug Design and Discovery of Novel Enaminone Derivatives as Potential Anti-seizure Agents


Patrice Jackson-Ayotunde, PhD; Rhashanda D. Haywood; Miguel Martin, PhD Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions University of Maryland Eastern Shore, Princess Anne, MD 21853


RESULTS


Table 1. Physicochemical Properties									
Identifier	ClogP	BBB_Filter	Rule of 5	Mol Wt	Pgp Inh	HBD	HBA		
RHB analogs	2.96	High (98%)	0	325.07	No	1	3		
RHB-59	2.78	High (99%)	0	257.33	Yes	1	3		
RHB-77ª	3.92	High (99%)	0	419.24	No				
Com		2. Physi			-				
Compound ID			Percent Yie	. ,	Melting Point Range 160.4-161.5°C				
	RHB-59		62.5%	D	100.4-101.3-0				
RHB-62			58.0%	, D	186.9-188.0°C				
ETSP 578001			43.5%	, D	151.0-151.5°C				
RHB-95			52.7%	, D	130.1-131.2°C				
RHB-99			46.3%	, D	165.4-166.2°C				
RHB-103			20.2%	, D	147.1-148.3°C				
R						;			
	HB-107		54.0%	, D	17	70.2-170.8°0			

137.0-138.3°C RHB-111 49.5% RHB-115 61.6% 148.3-149.2°C 48.5% RHB-123 138.6-139.2°C RHB-127 42.3% 170.3-171.2°C 54.6% RHB-133 135.0-137.3°C 53.8% RHB-137 177.1-177.9°C 32.0% 171.9-172.8°C RHB-146 RHB-158 32.3% 133.4-134.5°C

Figure 4. In Vitro Electrophysiological Preliminary Results

Table 3. Results of Compound ETSP 578001 in Test 33 Figure 6: Off target Identification Studies of ETSP 578001

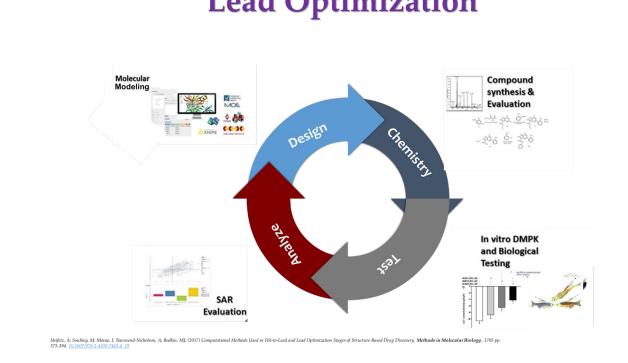
Table 1: Profile of Initial Antiseizure Activity and Rotarod Performance of ETSP# 578001 in **B** Male Mice (Intraperitoneal (IP) administration).

Time(Hours)		0.25		0.5		2.0	
Test	Dose	N/F	Comment	N/F	Comment	N/F	Comment
	(mg/kg)		Code		Code		Code
6HZ	30			0/4		0/4	
	100			0/4		0/4	
	300			0/4		0/4	
MES	30			0/4	4	0/4	
	100			0/4	4	0/4	4
	300			1/4		2/4	
Rotarod	30			0/8		0/8	
	100			0/8		0/8	
	300			0/8		0/8	
72 hour	30	0 / 15					
mortality							
	100	0 / 14					
	300	0/16					

(A). Effect of ETSP 578001 on voltage-gated sodium channels (50 µM). (B). Profile of initial anti-seizure activity and rotarod performance of male mice (intraperitoneal injection); N = number of animals protected; F = number of animals tested. For rotarod test, N = number of animals displaying adverse effects; F = number of animals tested. Any adverse effects are noted. Comment code **4** = death

ACKNOWLEDGEMENTS

Internal Collaborators:


- Rhashanda D. Haywood, MS
- Dr. Miguel Martin-Caraballo (UMES)- Collaborator (Electrophysiology) • Dr. Tracy Bell (UMES) – Collaborator (Zebrafish)

External Collaborators:

- Dr. Shalini Sharma NINDS, NIH- Epilepsy Therapy Screening Program
- Dr. Ann Poduri (Boston Children Hospital/Harvard University)
- UMES School of Pharmacy and Health Professions
- PhRMA Foundation Pre-Doctoral Fellowship in Drug Discovery
- UMES Richard A. Bernstein Endowment

- on prototype IAA65.
- of T-type voltage-gated calcium channel.
- studies on ETSP 578001.

REFERENCES

- (1) Start a Conversation. Epilepsy Foundation.
- properties. Tetrahedron 2021, 83, 131984.
- 116766.

• Fifteen target analogs have been designed and synthesized based

Preliminary in vitro studies showed RHB-111 has <u>> 90% inhibition</u>

To validate the biological activity of molecule ETSP 578001, was investigated in acute battery rodent seizure models at NINDS ETSP. The preliminary results showed that molecule ETSP 578001 had low efficacy and safety as an anti-seizure agent.

 A target-based drug design strategy was employed, that led to the discovery of ETSP 578001, as a dual VGSC and T-VGCC blocker. Future studies will involve lead optimization and target identification

Lead Optimization

https://www.epilepsy.com/volunteer/spreading-awarness/startconversation-epilepsy-seizures (accessed 2023-09-06).

(2) Amaye, I. J.; Haywood, R. D.; Mandzo, E. M.; Wirick, J. J.; Jackson-Ayotunde, P. L. Enaminones as building blocks in drug development: Recent advances in their chemistry, synthesis, and biological

(3) Amaye, I. J.; Jackson-Ayotunde, P. L.; Martin-Caraballo, M. Evaluation of potential anticonvulsant fluorinated N-benzamide enaminones as Ttype Ca2+ channel blockers. Bioorganic & Medicinal Chemistry 2022,