

Evaluating the Impact of No Standardized Tests on Early Assurance Student Success

Contact information:

Celeste Caulder

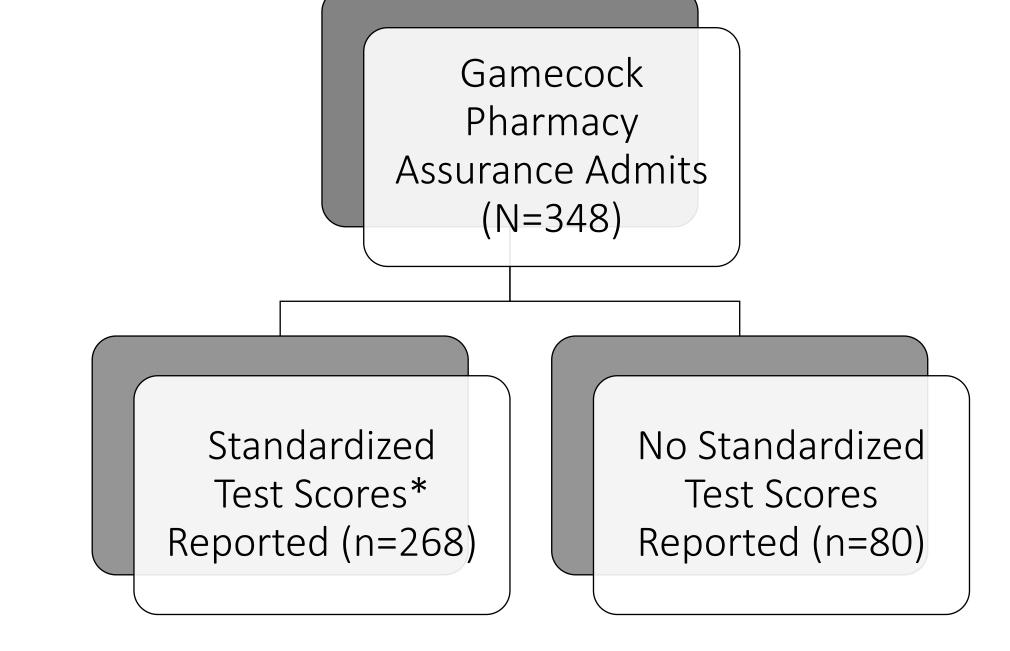
caulderc@cop.sc.edu

Celeste Caulder, PharmD; Nikki Mellen, MEd; Chao Cai, PhD; Julie Sease, PharmD

Abstract # 2751514

BACKGROUND

- Many colleges/universities have continued as test optional for undergraduate admissions since the pandemic.
- Early assurance students are admitted with no requirement for reported standardized test scores to the University of South Carolina College of Pharmacy Gamecock Pharmacy Assurance (GPA) pathway.
- We sought to determine if lack of standardized test score results in admission of early assurance students who struggle in pre-pharmacy coursework or the first year of the professional degree program.


OBJECTIVES

- •To evaluate if lack of standardized test score reported among students enrolled in an early assurance pathway results in a difference in:
 - Matriculation rate into the Doctor of Pharmacy professional degree program; and/or
 - •Success factors during the first year of the Doctor of Pharmacy program.

METHODS

IRB-approved retrospective observational evaluation of two early assurance cohorts

*For standardized test scores reported, mean ACT was 28.32 and mean SAT was 1302.

- Descriptive statistics were applied to the collated data
- Continuous and categorical variables analyzed using t-tests and x² respectively
- Wilcoxon Rank Sum test used for sample size < 30
- Fischer's exact test used for contingency tables for cell sizes < 5

RESULTS

Table 1. Baseline Characteristics of GPA Students

Baseline Characteristic	Standardized Test Score Reported* (n=268)	No Standardized Test Score Reported (n=80)	Pvalue
Gender Male Female Unknown	62 (23.1%) 205 (76.5%) 1 (0.4%)	14 (17.5%) 66 (82.5%) 0 (0%)	0.5033
Race Asian Black Hispanic White Other	22 (8.2%) 20 (7.5%) 7 (2.6%) 203 (75.7%) 16 (6.0%)	4 (5.0%) 11 (13.8%) 5 (6.2%) 57 (71.3%) 3 (3.7%)	0.1652
Instate Yes No	153 (57.1%) 115 (42.9%)	46 (57.5%) 34 (42.5%)	1
Honors College Admission Yes No	53 (19.8%) 215 (80.2%)	5 (6.3%) 75 (93.7%)	0.007409
Mean High School GPA, mean (SD)	4.597 (0.40)	4.543 (0.37)	0.2845

Take Home Point

A significant difference in prerequisite GPAs between students who reported no standardized test scores and those who did indicates a need for continued monitoring and may inform future change to pathway admission requirements.

Table 2. Prerequisite Performance of GPA Students

Prerequisite GPAs	Standardized Test Score Reported (n=189)	No Standardized Test Score Reported (n=19)	Difference of two medians	P value
Science Prerequisite GPA, median	3.64	3.06	0.58	0.002248
Math Prerequisite GPA	4.00	3.13	0.87	0.0007064
Pharmacy Prerequisite GPA	3.72	3.40	0.32	0.003103

RESULTS

Table 3. Matriculation and Success Factors During P1 Year

Success Factor	Standardized Test Score Reported (n=220)	No Standardized Test Score Reported (n=33)	Difference of two proportions	P value	Power
Matriculation Yes No	153 (70%) 67 (30%)	21 (64%) 12 (36%)	6%	0.6301	8%
Success Factor	Standardized Test Score Reported (n=121)	No Standardized Test Score Reported (n=4)	Difference of two medians	P value	Power
Fall P1 GPA, median	3.64	3.43	0.21	0.1115	45%
Spring P1 GPA, median	3.61	3.53	0.08	0.3472	14%
Overall P1 GPA, median	3.59	3.48	0.11	0.2214	35%
P1 Deficiencies Yes No	4 (3%) 117 (97%)	1 (25%) 3 (75%)	22%	0.1524	33%

Conclusions

- There was a significant association between Honors College admission and submissions of standardized test scores.
- Students reporting standardized test score at GPA pathway admission had higher overall prerequisite GPAs, as well as higher GPAs in science and math coursework, by the conclusion of their undergraduate courses.
- No difference in matriculation rate or P1 success factors were observed; however, a limitation of this study was its small population leading to insufficient power to detect difference in these outcomes.

REFERENCES

- Schlesselman LS, Coleman CI. Predictors of poor student performance at a single, Accreditation Council for Pharmacy Education–accredited school of pharmacy. Curr Pharm Teach Learn. 2011;3(2):101-105.
- 2. Whittle M. Do you Need the SAT for College Admission? What to know. Forbes ADVISOR. July 3, 2023. 3. Hall J, Corelli R, DeHart R et al. Trends in Pharmacy College Admissions Test Requirements and Utilization Across Colleges and Schools of Pharmacy.
- Am J of Pharm Edu. 2021; 85(3): Article 8179.

 4. Darbishire P, Schoelles-Williams J, Petrelli H, Van Amburgh J. Challenges to Pharmacy School Enrollment Management Caused by a Global Pandemic. Am J of Pharm Edu. 2020;84: Article 8150.

<u>Disclosures:</u> The authors of this presentation have no disclosures concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.