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Results

a)

a)

i) Endolysin shows efficacy (in vitro)…

i) ..and selectivity (ex vivo) against S. aureus.

Endolysin selectively inhibits S. aureus in human ex vivo skin wounds. a) Quantification of

bacteria in single and mixed species biofilms. b & c) Visual assessment of biofilm load in
human skin. ** = P < 0.01, *** = P < 0.001. Bar = 200µm.

Endolysin substantially reduces S. aureus membrane biofilm load, demonstrated via
bacterial enumeration (a) and CLSM Live:Dead imaging (b). *** = P < 0.001.
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We need to develop “real world” microbiome models that 
are truly translational

ii) Pigs provide a human-relevant model to assess 

staphylococcal modulation.

Long-read metagenomic profiling (Nanopore) demonstrates high similarity in skin bacterial

diversity between humans and pigs (a) with more similar contribution of Staphylococcus at
the genus and species level (b). ** = P < 0.01, *** = P < 0.001. Red ** versus pig.
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Next step: First interventional study in pigs to assess 
microbiome modulation with selective antimicrobials

Direct enumeration of S. aureus (a) compared to read counts (b).
Bars = 100µm

Bars = 100µm

ii) Endolysin selectively depletes endogenous S. aureus

a) b)
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iii) …and significantly accelerates wound repair.

Representative H&E images (a) and

quantification of wound width and area (b).
* = P < 0.05, ** = P < 0.01.
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ii) Endolysin-treated wounds maintain a pre-wound 

skin-like Staphylococcus profile.

iii) Staphylococcal modulation dampens inflammation...

Temporal profiling of Staphylococcus proportions in peri-wound skin and wounds following
endolysin treatment. D0 = prior to wounding.
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Endolysin treated wounds show lower numbers of total macrophages (Iba1+ve) and a

higher proportion of those macrophages are anti-inflammatory (Arg1+ve). Representative
images in a. Quantification in b & c. Bar = 25μm. * = P < 0.05.

a) b)
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Porcine staphylococci grown in mixed communities mimicking S. aureus (SA) dominant

(vehicle-modelled) and SA-depleted (XZ.700-modelled) microbiomes. Relative proportion

shown in a. Corresponding wound closure assessed in b and c. Bar = 200μm. P < 0.01.

a) b) c)

The Challenge: Wound Infection

Introduction

The microbiota is essential for skin health, but dysbiosis, as seen with aging and

diabetes, can impair skin function and increase infection risk (1). Wound infections are a

major contributor to poor healing, often preceding over 90% of wound-related

amputations (2). These wound infections are recalcitrant due to the presence of

antimicrobial resistant (AMR) pathogens. Moreover, when we treat with antibiotics, we

can deplete the resident microbiota and promote the growth of AMR pathogens (3;
Figure 1). Thus, there is urgent need to develop new, pathogen-selective antimicrobials

to replace traditional antibiotics.

Antibiotic Resistant 
Organism

Antibiotic

The challenge is to develop antimicrobials that kill pathogens 

without harming the commensal microbiota

Figure 1. Antibiotics deplete the resident microbiota, promoting AMR pathogen growth.

Could Endolysins Be the Key to 

Tackling Antimicrobial Resistance?

Bacteriophage-derived peptidoglycan-

degrading enzymes (endolysins) are

emerging as an innovative antimicrobial

therapy. The coevolution of

bacteriophages with bacteria means

that endolysin resistance is rare, while

endolysins are often targeted against

certain bacterial hosts, thus preventing

selective pressure on the resident
microbiota (4).

To assess the efficacy and selectivity of a novel endolysin engineered 

against the common skin/wound pathogen, Staphylococcus aureus.

Aim

Methods
i) Screening endolysin efficacy in 

Staphylococcus infection models

ii) Microbiome profiling

iii) Tissue level effects of endolysin

DNA isolation from swabs & long-read sequencing

iv) Translational relevance

Human Ex Vivo Skin

Quantification

a) Pig-mouse-human skin comparison

b) Endolysin effects on “real-world” microbiome

Human

Mouse

a) b)

Pig Skin Swab (day 0)

Long-Read Sequencing

Histological characterisation of healing Effects of Staphylococcus on human skin repair

Open 
Wound

Scan me for protocol

Enumeration Live:Dead Staining

a) H&E staining

b) Macrophage profiling (Iba1 & Arg1)

To read more 

What is the role of the S. aureus dominated microbiome in 
human wound repair?

iv) An S. aureus-dominated microbiome delays human 

wound repair…
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iv) …and alters host response.

S. aureus (SA) dominant mixed communities upregulate key pro-inflammatory pathways.

mailto:h.n.wilkinson@hull.ac.uk

