STRETCH SHORTENING CYCLE CATEGORY FROM DROP JUMP IS NOT INDICATIVE OF SPRINT PERFORMANCE ACROSS FOOTBALL, BASKETBALL, AND TRACK COLLEGIATE ATHLETES

¹Simon Hart, ¹Matthew P. Gonzalez, ¹Keilah McCracken, ¹Israa Ajroudi, ¹Micah Galaviz ^{2,3}Samuel Montalvo, ⁴Martin S. Dietze- Hermosa, ¹Sandor Dorgo

¹Athletic Performance, Strength, and Aging Lab, Department of Kinesiology, University of Texas at San Antonio; ²Division of Cardiovascular Medicine, Stanford University; ³Wu Tsai Human Performance Alliance, Stanford University; ⁴Department of Human Performance and Recreation, Brigham Young University-Idaho

INTRODUCTION

- The stretch shortening cycle (SSC) is a countermovement action with a spring-like mechanism and three distinct phases that enhances athletic performance in explosive movements
- An athlete performing a drop jump (DJ) on force plates can be categorized with an SSC category of POOR, MODERATE, and GOOD. Figure 1 shows the criteria for categorization.
- Perfect spring-like behavior produces a Pearson correlation between vertical force and vertical displacement of -1.0.
- When it deviates to >-0.8, it is common to see an impact peak
 wherein the peak force occurs in the first 20% of ground contact
 time, suggesting an increased dissipation of energy into passive
 tissues
- While individuals can be classified into the SSC category from the drop jump, it is unclear if this translates into differences in sprint performance

PURPOSE

 To determine differences in 30-meter sprint completion times between drop jump SSC categorizations

METHODS

- Sixty-three collegiate athletes participating in football (FB, N=31), basketball (BB, N=10), or track (TR, N=22) had performance data collected during preseason, over two sessions.
- During the first session, all athletes performed DJ from a bench positioned 45.72 cm above two force plates sampling at 1000 Hz.
- DJ performance was then used to determine the spring-like correlation and registered an impact peak. Each athlete performed at least two trials of the DJ with the best trial used for analyses. (See Figure 1).
- Sprint times were captured in an ensuing session using timing gates to capture times at the 5-, 10-, 15-, 20-, 25-, and 30-meter marks. (See Figure 2).

Table 1 - Mean ± Standard Deviation of sprint times in seconds and comparison between groups

	x5m	x10m	x15m	x20m	x25m	x30m
POOR	0.0995 ±.078	1.756 ±	2.410 ±	3.030 ±	3.628 ± .204 4.205 ±	4 205 + 236
		.085	.121	.162	3.020 ± .20 T T.203 ± .23	
MODERATE	1.031 ± .070	1.771 ±	2.423 ±	$3.033 \pm$	3.627 ± .221 4.200 ± .290	
		.095	.132	.174	3.02/±.221	4.200 ± .290
GOOD	1.010 ± .085	1.771 ±	2.428 ±	$3.047 \pm$	3.645 ± .218 4.234 ± .224	
		.096	.140	.175		
Kruskal Wallis H	2.909	0.443	0.316	0.095	0.141	0.335
P value	0.234	0.801	0.854	0.954	0.932	0.846

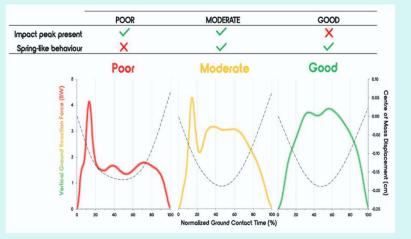
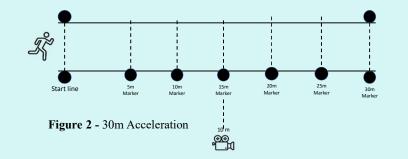



Figure 1 – Impact peak force-time curves from Drop Jump

STATISTICAL ANALYSIS

- A Kruskal-Wallis test was used to determine differences in sprint times between the three SSC categories.
- Significance was set to an alpha level of p<0.05.

RESULTS

- Analysis of the DJ showed that 24 athletes were SSC categorized as POOR (FB = 12, BB = 6, TR = 6), 20 categorized as MODERATE (FB = 8, BB = 1, TR = 11), and 19 categorized as GOOD (FB = 11, BB = 3, TR = 5).
- Mean sprint times in seconds for 5m meter intervals are summarized in Table 1.
- Kruskal-Wallis analysis of the sprint times between groups showed no significant differences at any of the timing intervals $(p_{5m}=0.234, p_{10m}=0.801, p_{15m}=0.854, p_{20m}=0.954, p_{25m}=0.932, p_{30m}=0.846)$ (See Table 1).

CONCLUSION

 Drop jump SSC categorization does not result in any differences in performance in 30-meter sprints.

PRACTICAL APPLICATIONS

 While both DJ and sprint performance are valid metrics of SSC oriented assessment, DJ derived SSC categorization does not appear to translate to outcomes in sprint performance.

Contact Info

Email: simon.hart@my.utsa.edu

REFERENCES

Pedley DJ. Drop jumps - measure these things, by Dr. Jason Pedley. Hawkin Dynamics. June 6, 2024. Accessed June 13, 2024. https://www.hawkindynamics.com/blog/drop-jumps-what-to-measure.