RELATIONSHIP BETWEEN BALANCE SWAY VELOCITY AND MODIFIED REACTIVE STRENGTH INDEX IN A COLLEGIATE WOMEN'S BASKETBALL TEAM

BSV significantly predicted RSI_{mod} for both high- and low-minute players

BACKGROUND

Increased postural sway (balance sway velocity; BSV) during quiet standing tasks may serve as a useful indicator for neuromuscular fatigue, reflecting its impact on balance ability. Modified reactive strength index (RSI_{mod}) quantifies an athlete's ability to dynamically change direction during jumping tasks, while adjusting for body mass, making it a potentially useful metric for monitoring plyometric performance and neuromuscular fatigue.

PURPOSE

To examine the extent to which RSI_{mod} can be predicted by BSV, and to compare RSI_{mod} and BSV between high- and lowminute players.

Ratio = **Time To Take Off** Nicholas M. Kuhlman,¹ Andrea Hudy,^{2,3} Jui Shah,³ Paige Leonard,³ Jennifer B. Fields¹

¹Department of Nutritional Sciences, University of Connecticut, Storrs, CT ²Department of Kinesiology, University of Connecticut, Storrs, CT ³Athletics Department, University of Connecticut, Storrs, CT

KEY FINDINGS

RSI_{mod} was greater for high-minute players vs. low*minute players*

- Figure 1.

 - (Figure 1).

Figure 1. Scatterplot of regression analysis and distribution of individual observations; shaded region represents 95% confidence interval; red dots: high-minute players; blue dots: low-minute players; Y' = 0.479 – 3.261x

	High-Minute Players (>15 min/game)	Low-Minute Players (<15 min/game)	<i>p</i> -value	Effect S (η ²)
BSV (m/s)	0.029 ± 0.008	0.027 ± 0.08	< 0.001	0.007
RSI _{mod} (AU)	0.399 ± 0.06	0.359 ± 0.07	< 0.001	0.083

• A scatterplot of the regression analysis, along with the distribution of of observations for high- and low-minute players are shown in

• MANOVA results comparing BSV and RSI_{mod} between high- and low-minute players are displayed in Table 1. • Regression analysis indicated that BSV is significant in predicting RSI_{mod} ($r = -0.407 R^2 = 0.16$, F(1.142, 0.004) = 319.47, p < 0.001)

• MANOVA results showed that RSI_{mod} and BSV were significantly greater for high-vs. low-minute players (Table 1).

RSI_{mod} between high- and low-minute players

BSV was greater for high-minute players vs low-minute players

CONCLUSIONS & PRACTICAL APPLICATION

- Findings suggest that increases fatigue-induced postural 111 sway velocity result in an attenuated RSI_{mod}.
- Despite exhibiting higher BSV, high players minute superior RSI_{mod} demonstrate low-minute compared to players.
- Force plate balance assessments may offer a non-orthopedically stressful method for evaluating neuromuscular fatigue/recovery and may hold potential for predicting how fatigue might impact more dynamic, sportspecific assessments (RSI_{mod})

