

ABSTRACT

BACKGROUND Cardiorespiratory fitness is a fundamental aspect of an athlete's overall physical capability and is vital to sports performance. While indirect calorimetry via direct gas exchange is the gold standard method to measure maximal oxygen uptake (VO₂max), this process requires specialized equipment and trained personnel to administer. Alternatively, field assessments offer a more accessible and cost-effective means for coaches to estimate VO₂max. Despite these field tests being validated for the general population, there are limited data regarding the agreement between measured and predicted VO₂max values in high-level soccer athletes. **PURPOSE:** This study investigated the agreement between the multi-stage "yo-yo" fitness test (MSFT) and direct gas exchange analysis in determining VO₂max. It was hypothesized the MSFT would overestimate VO₂max due to the indirect nature of the valuation and fewer objective criteria for test termination. METHODS: Male collegiate soccer athletes (N=14, age= 21.1 \pm 1.2 y) completed both field-based and laboratory VO₂max assessments one week apart prior to 2024 spring training. The field MSFT was a continuous 20-meter shuttle run (the "yo-yo" test) starting at 8.5 km/h, with speeds increasing by 0.5 km/h each minute until volitional exhaustion. The test was terminated if an individual could not complete two consecutive shuttle runs during the specified time. VO₂max was estimated using the Ramsbottom equation. For the laboratory assessment, participants completed a graded exercise test where speeds increased every two minutes until volitional exhaustion, while having direct gas exchange measured via metabolic cart (COSMED, Concord, CA). VO₂max was recorded as the highest 30-second average achieved during the test. Pearson's r with a 95% confidence interval (CI) was used to assess the relationship between estimated and measured VO₂max. Bland-Altman plots were used to assess mean differences and limits of agreement (LOA) between test results and intraclass correlation coefficients (ICC) with 95% CIs were calculated to compare the agreement between the two tests. **RESULTS:** A significant positive relationship existed between estimated and measured VO_2 max (r = 0.60, P = 0.023, CI: 0.10-0.86). There was moderate agreement between estimated and measured VO₂max (ICC=0.58, CI: 0.20-0.81) with the MSFT overestimating VO₂max by 2.9 (LOA: 0.88 to 4.96) ml/kg/min. **CONCLUSION:** While estimated and measured VO₂max results were correlated, the MSFT consistently overestimated VO₂max. These data are important to consider when designing training programs or programming wearables based on an athlete's VO₂max for conditioning or monitoring purposes. **PRACTICAL APPLICATIONS:** It is essential that coaches use a consistent method to assess cardiorespiratory fitness throughout the season since the tests, while related, are not interchangeable. However, the MSFT is a reliable, cost- and time-efficient way to estimate VO₂max when laboratory equipment is not available.

INTRODUCTION

- Cardiorespiratory fitness represents a fundamental aspect of an athlete's overall physical capability and sports performance.
- Direct gas exchange measurement of maximal oxygen uptake (VO₂max) is the gold standard for assessing cardiorespiratory fitness, but it requires specialized equipment and trained personnel.
- In contrast, field tests, such as the multi-stage fitness test (MSFT) offer a more accessible and cost-effective means to estimate VO₂max but may lack precision and accuracy.

Purpose: To investigate the agreement between the MSFT and direct gas exchange analysis in determining VO_2 max.

Par

COI VO

VOI

CO

AGREEMENT BETWEEN MEASURED AND ESTIMATED VO₂MAX IN **DIVISION I COLLEGIATE MALE SOCCER PLAYERS**

Chimaobim E. Martin-Diala, Nestor F. Urrea, Gianna F. Mastrofini, Alexa J. Chandler, Blaine S. Lints, Emma Worley, Sten O. Stray-Gundersen, Shawn M. Arent University of South Carolina Arnold School of Public Health, Columbia, SC

MAIN FINDING

While there was a positive correlation and modest agreement between VO₂max values estimated by the MSFT and those measured by gas exchange, the MSFT repeatedly overestimated VO₂max.

PRACTICAL APPLICATIONS

> When used appropriately, the MSFT is a relatively effective and efficient way to estimate VO₂max in cases where laboratory equipment is not available or feasible.

Coaches should be aware of the regular overestimation of VO₂max when using the MSFT to assess cardiorespiratory fitness.

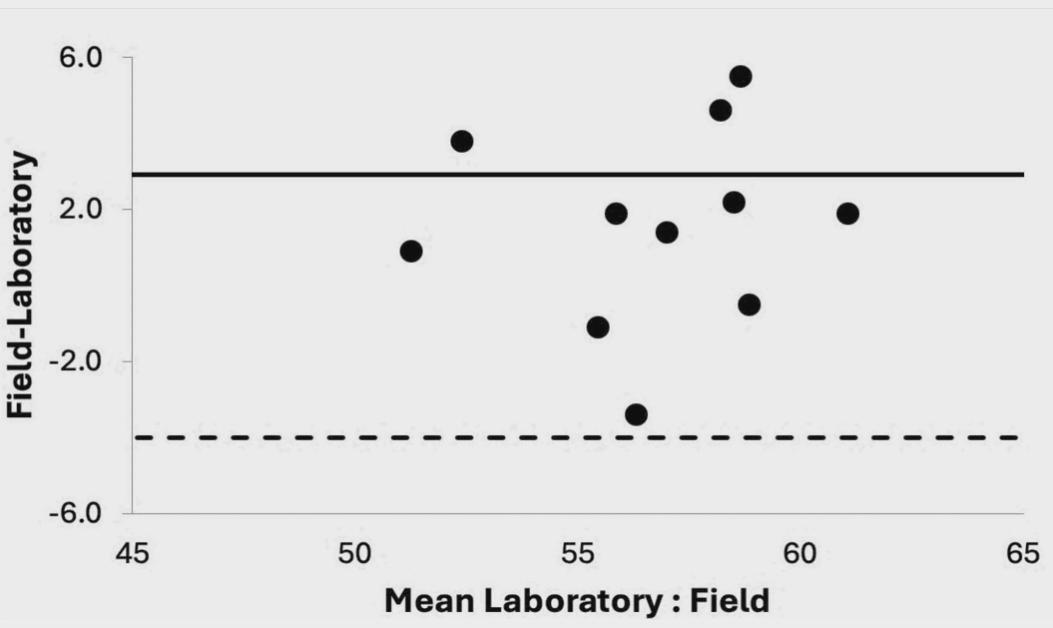
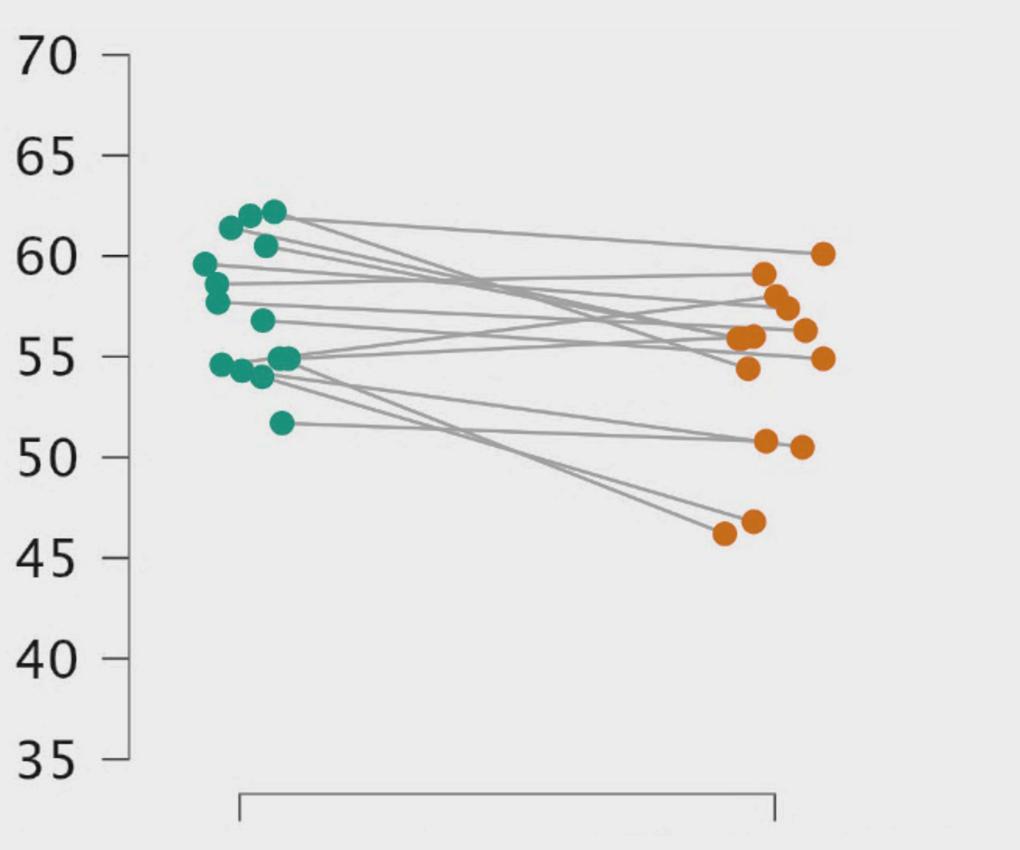

METHO	DS
articipants: Fourteen male collegiate soccer athletes (M _{age} = 21.1 ± 2 y) completed both field-based and laboratory VO ₂ max sessments one week apart prior to spring training.	St •
eld Assessment (MSFT/Beep Test): A continuous 20-meter shuttle n starting at 8.5 km/h, with speeds increasing by 0.5 km/h each inute until volitional exhaustion or if an individual can no longer mplete two consecutive shuttle runs within the specified time. D ₂ max was estimated using the Ramsbottom equation.	•
boratory Assessment (direct gas exchange): Graded treadmill- ased exercise test where speeds increase every two minutes until olitional exhaustion. Direct gas exchange was measured using a DSMED metabolic cart. VO ₂ max was recorded as the highest 30- cond average achieved during the test.	•

Figure 1: Beep Test

Statistical Analyses:

- A Pearson's correlation coefficient (r) with a 95% confidence interval (CI) was used to assess the relationship between estimated and measured VO₂max.
- Bland-Altman plots were generated to visualize mean differences and limits of agreement (LOA) between test results.
- Intraclass correlation coefficients (ICC) with 95% CIs were calculated to compare the agreement between the two tests.
- An alpha level of 0.05 was used to determine significance.


Figure 2: Laboratory VO₂max assessment set up

RESULTS

Field Test Laboratory Test

Figure 3: Individual VO₂max values from the field versus laboratory testing methods (r = 0.60, P = 0.023, CI: 0.10-0.86).

Figure 4: Bland-Altman plots VO₂max values acquired from the field versus laboratory testing methods (ICC=0.58, CI: 0.20-0.81).

@UofSCSportSci

O @uofscsportsci