Identifying Sex-Differences In Neuromuscular Patterns Of Response During Unilateral and Bilateral Fatiguing Body Weight Squats

Jose L. Mora Jimenez¹, Balea J. Schumacher¹, Brady R. Fishpaw¹, John Paul V. Anders¹

¹The Ohio State University, Columbus, Ohio

INTRODUCTION

Prior studies demonstrated that during submaximal exercise, women exhibit greater resistance to fatigue than men¹. However, the mechanisms mediating these differences remain unclear.

PURPOSE

The purpose of this study was to examine sex differences in the neuromuscular patterns of response during unilateral (UL) and bilateral (BL) bodyweight (BW) squats to failure.

METHODS

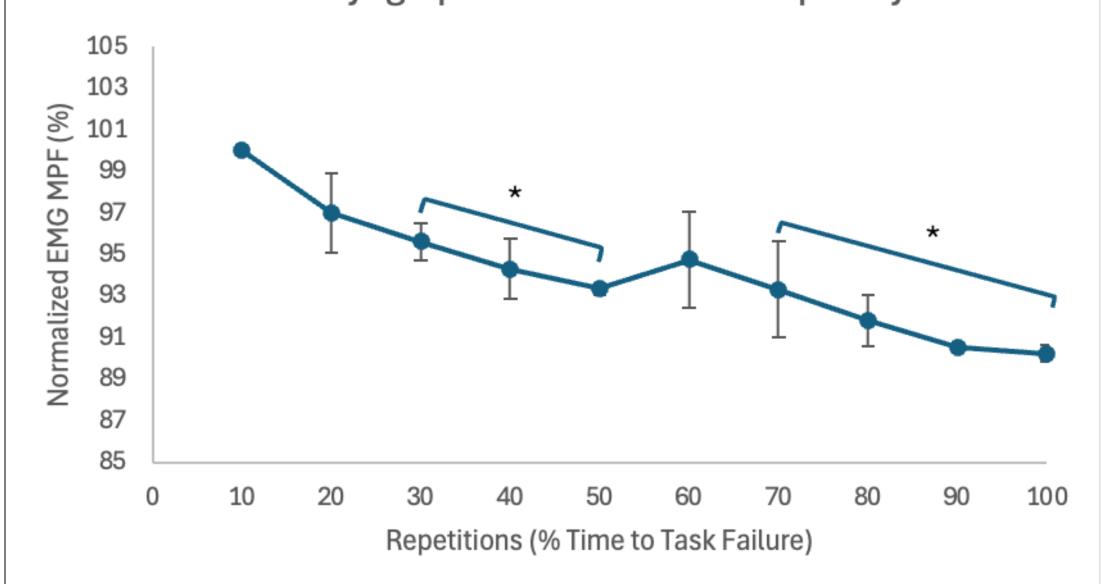
Table 1. Participant Characteristics

	Male	Female
Weight (kg)	78.1±12.5	68.0±9.6
Height (cm)	176.8±5.8	164.3±6.4
Age (years)	24.0±4.4	25.8±3.3
PA Level (min)	241.0±110.8	255.0±117.6

Physical Activity (PA) level measures resistance exercise per week.

PROCEDURES

- Participants performed UL and BL BW squats at full range of motion until failure, in random order on separate days. BW squats were done in a standing position, lowering to 90-degree knee flexion and returning to a standing position.
- For UL, participants placed their non-working leg on a bench behind them.
- Data was collected using electromyography (EMG) sensors attached to the vastus lateralis (VL) and bicep femoris (BF) muscles.


Figure 1. Example of participant performing unilateral fatiguing task with EMG sensors.

RESULTS

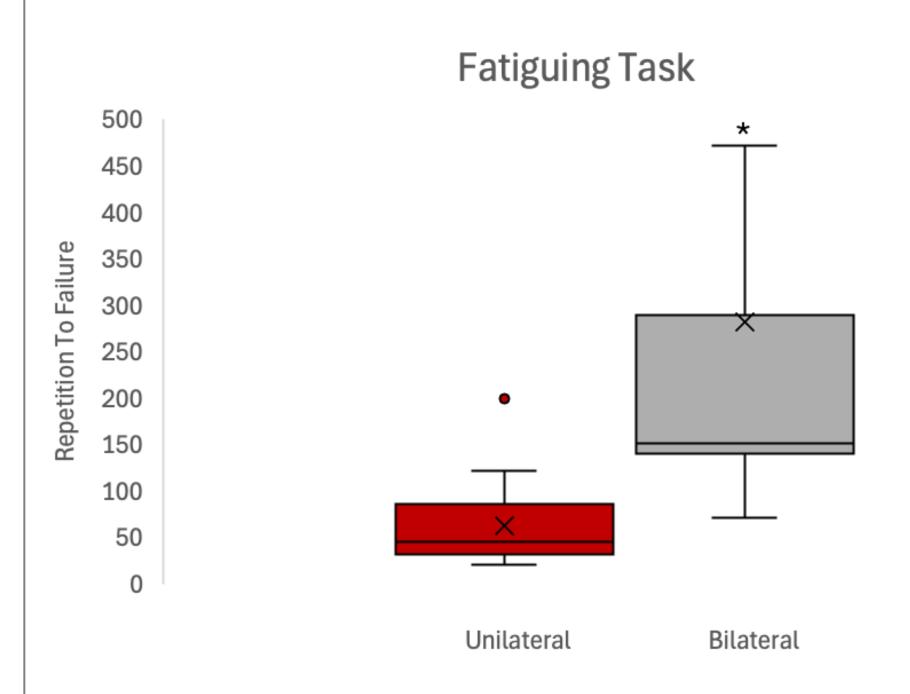


Figure 2. Mean \pm Standard Deviation of Electromyographic (EMG) amplitude (AMP) during the submaximal fatiguing task, collapsed across modality. * Indicates a significant (p<0.05) difference from the value at 10% time to task failure.

Electromyographic Mean Power Frequency

Figure 3. Mean \pm Standard Deviation of Electromyographic (EMG) Mean Power Frequency (MPF) during the submaximal fatiguing task, collapsed across modality. * Indicates a significant (p<0.05) difference from the value at 10% time to task failure.

Figure 4. Mean ± Standard Deviation of the repetitions performed during the Unilateral and Bilateral fatiguing tasks. * Indicates a significant (*p*<0.05) difference in the number of repetitions performed. Note: n=2 was removed from the figure due to performing 892 and 1136 repetitions for the UL and BL modalities, respectively.

- The EMG AMP results indicated no significant 3-way or 2-way interactions (p>0.05), but a significant main effect for Repetition (p<0.001).
 - Post-hoc pairwise comparisons
 demonstrated that compared to the
 value at 10%, the values at 30-50%
 (p=0.009-0.016) and 70- 100%(p<0.001 0.012) time-to-task failure (TTF) were
 significantly greater.
- For EMG MPF, the results indicated no significant 3-way or 2-way interactions (p>0.05), but a significant main effect for Repetition (p<0.001).
 - O Post-hoc pairwise comparisons demonstrated that compared to the value at 10%, 30- 50% (p<0.001) and 70%-100% (p<0.001-0.002) TTF were significantly lower.

- Analysis for Repetitions completed demonstrated no Sex by Condition interaction (p=0.601) but a significant main effect for Condition (p=0.006).
 - Post-hoc pairwise comparisons demonstrated that the participants performed significantly more repetition during the BL (282.2±281.2reps) than the UL condition (62.8±43.9reps).

CONCLUSION

- Under submaximal conditions, men and women exhibited a similar increase in neuromuscular excitation (EMG AMP) and development of peripheral fatigue (EMG MPF) in response to submaximal fatiguing exercise.
- Our finding suggested that under submaximal conditions, there were no sex-specific differences in the neuromuscular patterns of response.

Practical Application

Under submaximal conditions, exercise-induced fatigability may be more attributable to perception of fatigue than excitation-contraction coupling failure. Practitioners may use athletes' ratings of perceived exertion to determine fatigability from submaximal exercise, regardless of sex.

Citation

1. Hunter SK. The Relevance of Sex Differences in Performance Fatigability. Med Sci Sports Exerc. 2016 Nov;48(11):2247-2256.