

ESTABLISHING CARDIOVASCULAR DISEASE RISK CUTOFF VALUES IN FIREFIGHTERS

D. E. Gonzalez¹, R. J. Sowinski¹, A. Zapp², S. E. Martin¹, M. J. McAllister³, & J. B. Mann¹

¹Texas A&M University, College Station, TX, USA; ²Fire Rescue Wellness, Montgomery, IL, USA; ³Texas State University, San Marcos, TX, USA

Abstract

Background

Previous work suggests a relationship between CVD risk among firefighters (FF) and oxidative stress (OS), poor fitness, and body composition. However, limited research has utilized receiver operating characteristic (ROC) curves to determine if these parameters can be indicative of CVD risk.

<u>Purpose</u>

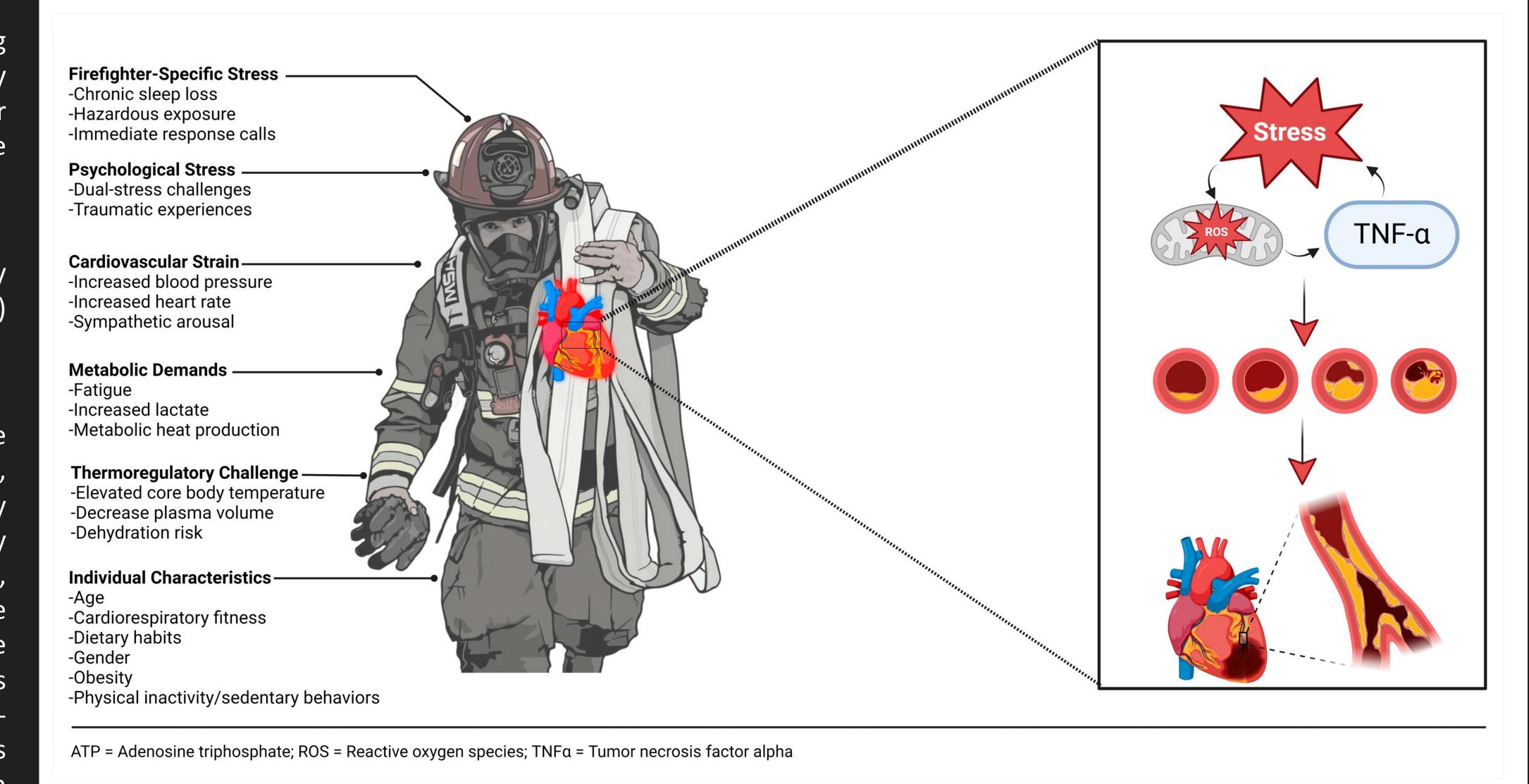
This study determined if biomarkers of CVD risk, fitness, and body composition could be used to delineate between low-risk (LOW) and moderate-risk (MOD) classifications.

Materials and Methods

160 career structural FFs from a local fire department were recruited. Fasted blood samples were collected for lipids, glucose, and advanced oxidation protein products (AOPP). Dual-energy x-ray absorptiometry and girth measures were taken to assess body composition. The FF completed a cardiopulmonary exercise test, and VO2max was estimated via the Foster equation. Based on the American College of Sports Medicine Scoring standards, FFs were risk-stratified in LOW or MOD classifications. Shapiro-Wilk Test was used to assess normality. Independent sample T-tests or Mann-Whitney U tests (if normality was violated) were used to assess differences in CVD risk biomarkers, fitness, and body composition between LOW and MOD. Effect sizes were calculated as Cohen's d. ROC Curves were performed to establish cutoff values to discern LOW from MOD. An area under the curve (AUC) < 0.5 denotes poor ability to discern LOW from MOD, while 0.7-0.8 is acceptable, 0.8-0.9 is excellent, and >0.9 is outstanding. Cutoff values were derived using the minimum distance from the left upper corner of the unit square to the nearest point to the left upper corner on the ROC curve.

Results

Compared to FF classified as LOW, MOD FF exhibited lower (p< 0.05) fitness, as well as unfavorable body composition and CVD risk parameters (See Table 1A). Significant and poor ROC curves were noted for all fitness parameters. Significant ROC curve AUCs ranging from acceptable to excellent were noted for body mass (BM), body mass index (BMI), body fat percent (BF%), fat mass (FM), waist circumference, android and gynoid adiposity, AOPP, total cholesterol (TC), low-density lipoprotein cholesterol (LDL), and triglycerides (TG), while a near-acceptable ROC curve was noted for and glucose (See Table 1B). Cutoff values were established for BM, BMI, BF%, FM, waist circumference, android adiposity, and AOPP, TC, LDL, and TG (See Table 1C).

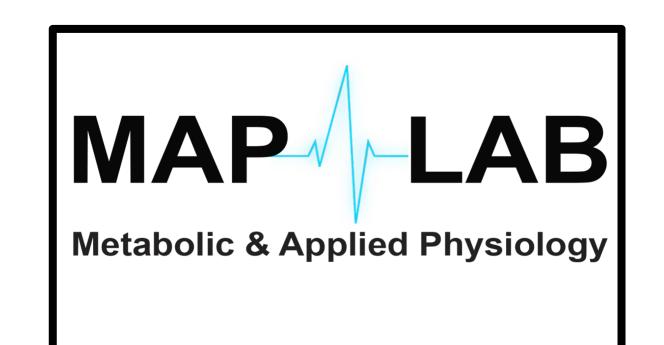

Conclusion

BM, BMI, BF%, FM, waist circumference, android adiposity, and AOPP, TC, LDL, and TG can be used to discern LOW from MOD. These findings suggest that coaches should emphasize tracking body composition and CVD risk biomarkers among FFs.

Practical Application

Coaches can impact FF health, wellness, and longevity by closely monitoring the cutoff values for body composition and CVD risk biomarkers. Educating FF and fire departments on these cutoff values and designing fitness training programs to improve these relevant markers will improve outcomes.

Firefighter Stressors


Figures

A Independent T-test						B ROC Curve Results				C Cutoff Values	
	Parameter	LOW	MOD	Sig.	d	Parameter	AUC	Sig.	95% CI diff	Test	Position
S	Age (years)	30.71 ± 6.25	37.23 ± 10.12†	<0.001	-0.73	Age	0.688	<0.001	0.601 to 0.775	Age	-
Demographics	Height (cm)	179.19 ± 5.43	179.12 ± 14.32	0.973	0.006	Height	0.54	0.440	0.442 to 0.638	Height	-
	Body Mass Index (kg/m²)	26.96 ± 3.12	32.74 ± 18.64†	0.034	-0.383	Body Mass Index	0.8**	<0.001	0.722 to 0.877	Body Mass Index	≥2802 kg/m ²
	Body Mass (kg)	86.71 ± 11.62	100.1 ± 14.75†	<0.001	-0.975	Body Mass	0.774*	<0.001	0.691 to 0.856	Body Mass	≥90.68 kg
	Cardiopulmonary Exercise Test Time (min)	12.11 ± 1.15	10.43 ± 1.48†	<0.001	1.222	Cardiopulmonary Exercise Test Time	0.177	<0.001	0.104 to 0.250	Cardiopulmonary Exercise Test Time	_
SS	VO _{2max} (ml/kg/min)	42.98 ± 4.88	36.06 ± 5.94†	<0.001	1.243	VO _{2max}	0.177	<0.001	0.104 to 0.250	VO _{2max}	-
Fitne		42.37 ± 7.18	38.56 ± 9.64†	0.019	0.431	Sit-Ups	0.371	0.014	0.275 to 0.468	Sit-Ups	-
	Push-Ups (total reps)	53.4 ± 11.89	43.52 ± 15.18†	<0.001	0.704	Push-Ups	0.292	<0.001	0.204 to 0.381	Push-Ups	-
	Grip Strength	110.73 ± 12.46	113.43 ± 19.28	0.222	-0.159	Grip Strength	0.566	0.222	0.463 to 0.669	Grip Strength	-
	Hip Circumference (in)	38.03 ± 2.944	40.72 ± 4.31†	<0.001	-0.693	Hip Circumference	0.699	<0.001	0.612 to 0.785	Hip Circumference	_
_	Wasit Circumference (in)	35.16 ± 3.04	39.06 ± 4.15†	<0.001	-1.028	Wasit Circumference	0.783*	<0.001	0.706 to 0.860	Wasit Circumference	≥36.75 in
sition	Wasit -to-Hip	0.92 ± 0.06	0.96 ± 0.05†	0.004	-0.568	Wasit -to-Hip	0.647	0.005	0.548 to 0.746	Wasit -to-Hip	-
8	Body Fat Percent (%)	21.34 ± 3.73	25.24 ± 5.04†	<0.001	-0.844	Body Fat Percent	0.733*	<0.001	0.649 to 0.817	Body Fat Percent	≥22.35%
Con	Fat Mass (lbs)	41.82 ± 11.02	56.86 ± 17.59†	<0.001	-0.968	Fat Mass	0.767*	<0.001	0.687 to 0.847	Fat Mass	≥46.64 lbs
þ		148.34 ± 23.31	161.79 ± 20.74†	<0.001	-0.619	Lean Mass	0.295	<0.001	0.201 to 0.388	Lean Mass	-
Bo	Andriod Adiposity (%)	24.14 ± 5.62	29.84 ± 6.42†	<0.001	-0.927	Andriod Adiposity	0.749*	<0.001	0.664 to 0.834	Andriod Adiposity	≥26.35 %
	Gynoid Adiposity (%)	24.15 ± 3.76	26.02 ± 4.68†	0.014	-0.426	Gynoid Adiposity	0.628	0.014	0.533 to 0.723	Gynoid Adiposity	-
	Total Cholesterol (mg/dL)	172.65 ± 29.74	202 ± 35.09†	<0.001	-0.882	Total Cholesterol	0.748*	<0.001	0.664 to 0.831	Total Cholesterol	≥187.50 mg/dL
S	Low-Density Lipoprotein (mg/dL)	98.53 ± 25.65	134.84 ± 40.68†	<0.001	-1.007	Low-Density Lipoprotein	0.811**	<0.001	0.740 to 0.882	Low-Density Lipoprotein	≥118.00 mg/dL
rke	High-Density Lipoprotein (mg/dL)	56.97 ± 11.54	44.72 ± 10.46†	<0.001	1.128	High-Density Lipoprotein	0.19	<0.001	0.118 to 0.262	High-Density Lipoprotein	-
Bioma	Triglycerides (mg/dL)	81.89 ± 43.5	142.05 ± 87.27†	<0.001	-0.805	Triglycerides	0.752*	<0.001	0.669 to 0.834	Triglycerides	≥86.50 mg/dL
Bi	Glucose (mg/dL)	88.57 ± 11.66	92.59 ± 11.64‡	0.055	-0.345	Glucose	0.627	0.014	0.528 to 0.725	Glucose	
	Advanced Oxidation Protein Products (μΜ)	122.63 ± 79.53	157.19 ± 88.7†	<0.001	-0.405	Advanced Oxiation Protein Products	0.705*	<0.001	0.608 to 0.803	Advanced Oxiation Protein Products	≥108.76 µM

than 0.9 is considered outstanding

Background

Firefighters have one of the most physically demanding occupations in today's society. It is well established that there is a high prevalence of cardiovascular disease (CVD) among structural firefighters due to the stressful nature of the occupation. Previous work suggests a relationship between CVD risk among firefighters (FF) and oxidative stress (OS), poor fitness, and body composition. However, limited research has utilized receiver operating characteristic (ROC) curves to determine if these parameters can be indicative of CVD risk.

Methods

- Retrospective Analysis of 160 career structural firefighters.
- Fasted blood biomarkers of OS and cardiometabolic health were assessed.
- Fitness parameters included the cardiopulmonary exercise test time to completion and estimated VO_{2max} via the Foster equation.
- Firefighters were classified as either LOW or MOD CVD risk via ACSM standards.

Statistical Analysis

- Normality check: Shapiro-Wilk Test.
- Differences in CVD risk biomarkers, fitness, and body composition between LOW and MOD:
 - Independent sample T-tests or Mann-Whitney U tests
- Effect sizes: Cohen's d.
- ROC Curves: establish cutoff values to discern LOW from MOD.
 - An area under the curve (AUC) = ability to discern LOW from MOD
 - <0.5 = poor
 - 0.7-0.8 = acceptable
 - 0.8-0.9 = excellent
 - >0.9 = outstanding

Results

- MOD FFs exhibited lower (p<0.05) fitness, as well as unfavorable body composition and CVD risk parameters compared to the LOW FFs.
- Significant and poor ROC curves were noted for all fitness parameters.
- Significant ROC curve AUCs ranging from acceptable to excellent were noted for:
- BM, BMI, BF%, FM, waist circumference, android and gynoid adiposity, AOPP, total cholesterol, low-density lipoprotein cholesterol, and triglycerides
- A near-acceptable ROC curve was noted for glucose.
- Cutoff values were established for BM, BMI, BF%, FM, waist circumference, android adiposity, and AOPP, TC, LDL, and TG.

Conclusions

BM, BMI, BF%, FM, waist circumference, android adiposity, AOPP, TC, LDL, and TG discern LOW from MOD CVD risk FFs.

PRACTICAL APPLICATION

Coaches can impact FF health, wellness, and longevity by closely monitoring the cutoff values for body composition and CVD risk biomarkers. Educating FF and fire departments on these cutoff values and designing fitness training programs to improve these relevant markers will improve outcomes.