ANALYSIS OF ATHLETE LOAD VIA WEARABLE MICROSENSORS ACROSS A WOMEN'S COLLEGIATE BASKETBALL SEASON

BACKGROUND

- Wearable microsensor technology ena quantification of practice and competit workloads of athletes
- Limited research exists exploring such wo women's collegiate basketball

PURPOSE

• To investigate workload metrics during and games throughout a competitive Collegiate Athletics Association (NCAA) (D-I) basketball season

duration (Table 2).

- players (p<0.01)

Table 2. Load metrics during games and pra

	High Minute (n=10)				Low Minute (n=5)				
	Game (n=189)	Practice (n=420)	P-value	Eta- square	Game (n=163)	Practice (n=381)	P-value	Eta- square	
EE (kcal)	1195 ± 295	1124 ± 405	< 0.001	0.29	943 ± 381	1013 ± 335	0.03	0.01	
EE/min (kcal/min)	8.8 ± 1.6	10.0 ± 2.6	< 0.001	0.05	5.2 ± 2.1	9.2 ± 2.5	< 0.001	0.36	
TL (AU)	249 ± 54	190 ± 71	< 0.001	0.14	94 ± 72	161 ± 69	< 0.001	0.16	
HR _{max} (bpm)	200 ± 13	196 ± 17	0.01	0.01	194 ± 19	198 ± 19	0.03	0.01	
HR _{avg} (bpm)	134 ± 9	142 ± 14	< 0.001	0.08	113 ± 14	143 ± 16	< 0.001	0.45	

Partial eta² effect sizes were classified as: $\eta 2=0.01$, small effect; $\eta 2=0.06$, medium effect; and $\eta 2=0.14$, large effect. EE: energy expenditure; TL: training load; HR: heart rate

Jennifer B. Fields,¹ Margaret T. Jones,²Andrew R. Jagim,³ Jason White⁴

¹Department of Nutritional Sciences, University of Connecticut, Storrs, CT ²Sport, Recreation, and Tourism Management, George Mason University, Fairfax, VA ³Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA ⁴School Of Kinesiology, Counseling & Rehabilitative Sciences, Northern Kentucky University, KY, USA

ables the tion-based	 NCAA D-I women's basketball High-minute players were class minute players (n=5). 							
orkloads in	 Separate multivariate ana high- and low-minute play Table 1. Descriptive chara 	lysis o yers (p acteris						
g practices e National Division I	Athlete Characteristic (n=15)	M						
	Age (yrs)]						
	Weight (kg)	7						
	Hoight (cm)	1						
	IICIgiii (Ciii)							

RESULTS

• High-minute players were exposed to higher absolute loads during games (p<0.01), likely due to a longer playing

• Relative intensities (kcal/min and HR_{avg}) were higher in practice for high-minute players (p<0.001). • High-minute players had higher energy expenditures and training loads in practices when compared to low-minute

actices	in	high-	and	low-minute	players
		••• 5 ••			

METHODS

athletes (n=15) participated (Table 1). sified as those who played ≥ 15 minutes per game (n=10); others were classified as low-

of variance (MANOVA) assessed differences in loads between games and practices in > 0.05).

- players.
- season for game scenarios.

MAYO CLINIC

An individualized approach to periodization and load management is warranted to improve athlete health, performance, and reduce injury risk throughout a collegiate basketball season for high- and low-minute

• It is recommended that high-minute players receive adequate recovery, while low-minute players receive added exposure to game-level intensities to ensure they are maintaining appropriate fitness levels throughout the