

Anna L. Dorny¹ Matthew P. Gonzalez², Samuel Montalvo³, Sandor Dorgo², Martin Dietze-Hermosa¹ ¹Brigham Young University-Idaho, ²University of Texas at San Antonio, ³Stanford University

Introduction

Ice hockey, due to its fast-paced nature and intermittent high-intensity bursts, demands players to possess good sprint capabilities. The sprint profile of ice hockey players is important to determine their on-ice performance and effectiveness.

Purpose

This study explored the impact of resisted sprint training (RST) on the overground sprint profile (maximal force $[F_0]$, power $[P_{max}]$, velocity $[V_0]$, maximal ratio of force $[RF_{max}]$, decrease in ratio of force $[D_{RF}]$, and force-velocity slope $[S_{FV}]$) of male youth ice hockey players.

Methods

Twenty-four competitive youth ice hockey players participated in the study. Participants were separated into three equal groups: off-ice RST; on-ice RST; bodyweight training. The training program lasted 8 weeks (2 sessions/ week).

Training program for both on-ice and off-ice RST groups

• Repetitions: 6-9 sprints depending on week • Distance: 20-meters • Rest Period: 3 minutes between repetitions • Sled Load: Off-ice= \sim 50-60% of bodyweight; On-ice= ~70-80% of bodyweight

The load for RST was provided by sleds loaded with weight plates.

This project was supported by the NSCA Foundation

DIFFERENCES IN SPRINT PROFILE FOLLOWING RESISTED SPRINT TRAINING IN YOUTH ICE HOCKEY PLAYERS

Training program for bodyweight group • The bodyweight training program incorporated high velocity body weight exercises.

Exercise	Time/Reps		Rest Time		Ro	unds
Squats	1 min		30 seconds		2	
Push Ups	1 min		30 seconds		2	
Planks	1 min		30 seconds		2	
Glute Bridge	1 min		30 seconds		2	
Broad Jumps	5 reps		30 seconds		2	
Dead Bugs	1 min		30 seconds		2	
Squat Jump	5 reps		30 seconds		2	
Exercise	Time/Reps		5	Rest Tim		Rounds
Skaters	5 reps eac		h leg	30 seconds		2
SL RDL 5 reps eac		h leg	30 secon	ds	2	

Exercise	Time/Reps	Rest Time	Rounds
Skaters	5 reps each leg	30 seconds	2
SL RDL	5 reps each leg	30 seconds	2
Bird/Dog	1 min	30 seconds	2
Superman	1 min	30 seconds	2
Burpees	1 min	30 seconds	2
Plank	1 min	30 seconds	2
Alternating lunges with arm reach	1 min	30 seconds	2

At baseline and post training, participants completed two 30meter acceleration maximal overground sprints. A video recording of the sprint trials were obtained using a high-speed camera (iPad Air, Apple Inc., USA) at 240 fps. The video files were then processed in the *MySprint* mobile application and corresponding spreadsheet to obtain measures of interest $(F_0, P_{max}, V_0, RF_{max}, D_{RF}, S_{FV}).$

RST, Group 3 = On ice RST. Group means and 95% confidence intervals.

N

Time Point

A two-way repeated measures ANOVA with follow up analysis measured the differences in sprint profile variables across groups and time point.

Figure 1. Changes in maximal power. Group 1 = Bodyweight, Group 2 = Off-ice

Group Assigned
1

There was a group by time point interaction effect for F_0 (p=0.01; η_{p}^{2} =0.37). Follow up analyses indicated an increase in F_0 for the off-ice RST group (Cohen's d=0.81; 95%CI [0.37,1.99]; p=0.01) and the on-ice RST (Cohen's d=1.15; 95%CI [0.16,2.47]; p=0.01).

[0.01,2.31]; p=0.01).

There was a group by time point interaction effect for RF_{max} (p=0.01; η^2_{p} =0.35) with the on-ice RST (Cohen's d=1.22; 95%CI [0.12,2.32]; p=0.01) and the off-ice RST (Cohen's d=0.51; 95%CI [0.38,1.40]; p=0.01) both displaying increases.

RST groups increased in F_0 , P_{max} , and RF_{max} . RST groups also displayed a greater negative S_{FV} .

Coaches may consider implementing RST into their training programs when aiming to increase overground sprint F_0 , P_{max} , RF_{max} and alter S_{FV} .

Results

There was a group by time point interaction effect for P_{max} (p=0.01; η_p^2 =0.34). P_{max} increased for the off-ice RST group (Cohen's d=0.72; 95%CI [0.29,1.72]; p=0.01) and the on-ice RST group (Cohen's d=1.15; 95%CI

There was a group by time point interaction effect for S_{FV} (p=0.02; η_{p}^{2} =0.33) with both RST groups displaying a greater negative slope; off-ice RST (Cohen's d=-0.70; 95%CI [-2.71,-0.67]; p=0.02) and on-ice RST (Cohen's d=-1.08; 95%CI [-2.50,-0.42]; p=0.02).

Conclusion

Practical Application

