

Autonomous Pharmaceutical Crystallisation DataFactory

Sahil Sandeep Salekar, Chantal Mustoe, Alastair Florence, CMAC Future Research Hub, The University of Strathclyde

Overview

- Crystallisation is widely used in pharmaceutical lacksquaremanufacturing
- Developing the crystallisation process can be resource intensive, limiting the scope, consistency of data acquired
- Automation offers high-throughput data collection and lacksquareopportunity for model-driven experimental design to improve prediction and optimisation
- Robotic solid-liquid dosing saves researcher time from manual repetitive tasks
- Robotic transfer allows for increased throughput and 24/7 operability
- Aim is to develop a comprehensive Crystallisation Parameter database as the foundation of a predictive Crystallisation Classification System to enable Quality by Digital Design (QbDD).

DataFactory Architecture

- QR printer and QR reader will be added in the process for sample tracking
- Increasing number of Crystallines for more data collection
- Involving different types of robots to automate the experiments for each instruments
- Implementing open standard communication like SILA2 (Standardisation in Lab Automation) and ROS2 (Robotic

Operating System) to standardise the communication interface between instruments Adding optimiser to determine the next best experiment

Conclusions

- Delivering autonomous, self-driving DataFactory for Crystallisation screening will enable comprehensive screening of crystallisation responses for multiple APIs
- These insights will deliver a unique process data asset to inform improved prediction and optimisation tools
- The result from this project will make a faster translation from pharmaceutical process development research to manufacturing

