

Dental Caries and Malocclusion in Patients with 22q11.2 Deletion and Duplication Syndromes

Shalin N. Shah¹, DMD, Cynthia Solot^{2,4} MA, CCC-SLP, Lauren Yap¹ DMD, MPH, Donna M. McDonald-McGinn^{4,5,6,8} MS, CGC, Hyun Duck Nah^{1,2,3} DMD, MSD, PhD

Children's Hospital of Philadelphia

University of Pennsylvania – School of Dental Medicine

Background

- 22q11.2 Deletion Syndrome (22q11.2DS) is a congenital disorder that occurs in 1 in 2,148 live births and 1 in 992 pregnancies
 - Most common microdeletion syndrome
 - Most common cause of syndromic cleft palate
 - Second most common cause of heart defects and developmental delays
- Included Phenotypes:
 - DiGeorge Syndrome
 - Velocardiofacial Syndrome
 - Conotruncal Anomaly Face Syndrome
 - AD Opitz G/BBB Syndrome
 - Sedlackova Syndrome
 - Cayler Cardiofacial Syndrome
- Reported oral characteristics include:
 - Cleft Palate
 - Dental Caries
 - Enamel Hypoplasia
 - Malocclusion
- There is little known about the oral characteristics regarding

 22q11.2 duplication syndrome (22q11.2DupS)
 - The prevalence of 22q11.2DupS has been reported in 1 in 850 pregnancies.
 - Associated with a range of phenotypes including congenital heart defects, vision abnormalities, growth failure
- Question Posed: What are the differences in orofacial and dental anomalies associated with 22q11.2DS and 22q11.2DupS?

Methods

 A section of DNA is duplicated.

- Retrospective Chart Analysis of patients diagnosed with 22q11.2 DS or 22q11.2DupS and seen at the Children's Hospital of Philadelphia in the following clinics:
 - "22q and You" Clinic
 - Department of Speech and Language Pathology
 - Craniofacial and Special Needs Orthodontics Clinic
- Recorded Findings:
 - Age
 - Gender
 - Genetic Anomaly (22q11.2DS or 22q11.2DupS)
 - History of Congenitally Missing Teeth
 - History of Cleft Lip/Cleft Palate/Both
 - Other diagnosed syndromes
 - Occlusion (Class 1, Class 2, Class 3)
 - History of Crowding
 - History of Anxiety
 - History of Caries
 - History of Snoring
- Once patient charts were identified, clinical notes from the clinical genetics team, speech language pathologists, plastic surgery, and craniofacial orthodontics clinic were reviewed.
- In the instances where information regarding a specific topic was unavailable, we noted that the information was <u>unreported</u>.

Results

Results (cont.)

Distribution of Recorded Findings in Separated 22q11.DS and 22q11.2DupS cohorts

Recorded Findings	22q11.2DS (n=109)	22q11.2DupS (n=18)
Gender Distribution	59 F 50 M	8 F 10 M
Average Age	9 years old	8 years old
Caries Experienced	42%	28%
Overbite (Class II Malocclusion)	35%	22%
Underbite (Class III Malocclusion)	4%	17%
Crowding	32%	6%
Cleft Palate	32%	6%
Cleft Lip	1%	11%
Cleft Lip and Cleft Palate	1%	0%
Diagnosis of other syndromes	7%	22%
Missing Teeth	5%	6%
Snoring	42%	33%
Anxiety	32%	28%

Conclusions

- This is the largest sample size of any of the studies in reported literature; however, further chart review is needed to increase overall sample size. Data analysis can also be strengthened by increasing the sample size of the duplication cohort.
- Due to the sample size discrepancy between the two cohorts, statistical comparison cannot be completed.
- Due to incomplete evaluation/history of dentition by non-dental personnel, we predict the incidence of caries and malocclusion is <u>lower</u> in this sample size than it would be if dental evaluation/history was completed by a dentist.
- From the data collected, it is shown that caries prevalence is high in the 22q11.2DS and 22q11.2DupS population. Proper involvement of dentistry in a multidisciplinary care group is <u>vital</u> to these patients' overall well-being.

References

- McDonald-McGinn DM, Hain HS, Emanuel BS, Zackai EH. 22q11.2 Deletion Syndrome. 1999 Sep 23 [updated 2020 Feb 27]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors.
- GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024. PMID: 20301696. Candelo E, Estrada-Mesa MA, Jaramillo A, Martinez-Cajas CH, Osorio JC, Pachajoa H. The Oral Health of Patients with

DiGeorge Syndrome (22q11) Microdeletion: A Case Report. Appl Clin Genet. 2021 Jun 1;14:267-277. doi:

10.2147/TACG.S280066. PMID: 34103968; PMCID: PMC8179788. Wong DH, Rajan S, Hallett KB, Manton DJ. Medical and dental characteristics of children with chromosome 22q11.2 deletion syndrome at the Royal Children's Hospital, Melbourne. Int J Paediatr Dent. 2021 Nov;31(6):682-690. doi: 10.1111/ipd.12755. Epub 2021 Feb 2. PMID: 33222329.

Affiliations

¹Craniofacial and Orthodontics Clinic, Children's Hospital of Philadelphia, Philadelphia, PA, USA; ²Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; ³Department of Surgery, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; ⁴22q and You Center, Children's Hospital of Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, PA, USA; ⁶Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; ⁷Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; ⁸Division of Human Biology and Medical Genetics, Sapienza, University, Rome, Italy