

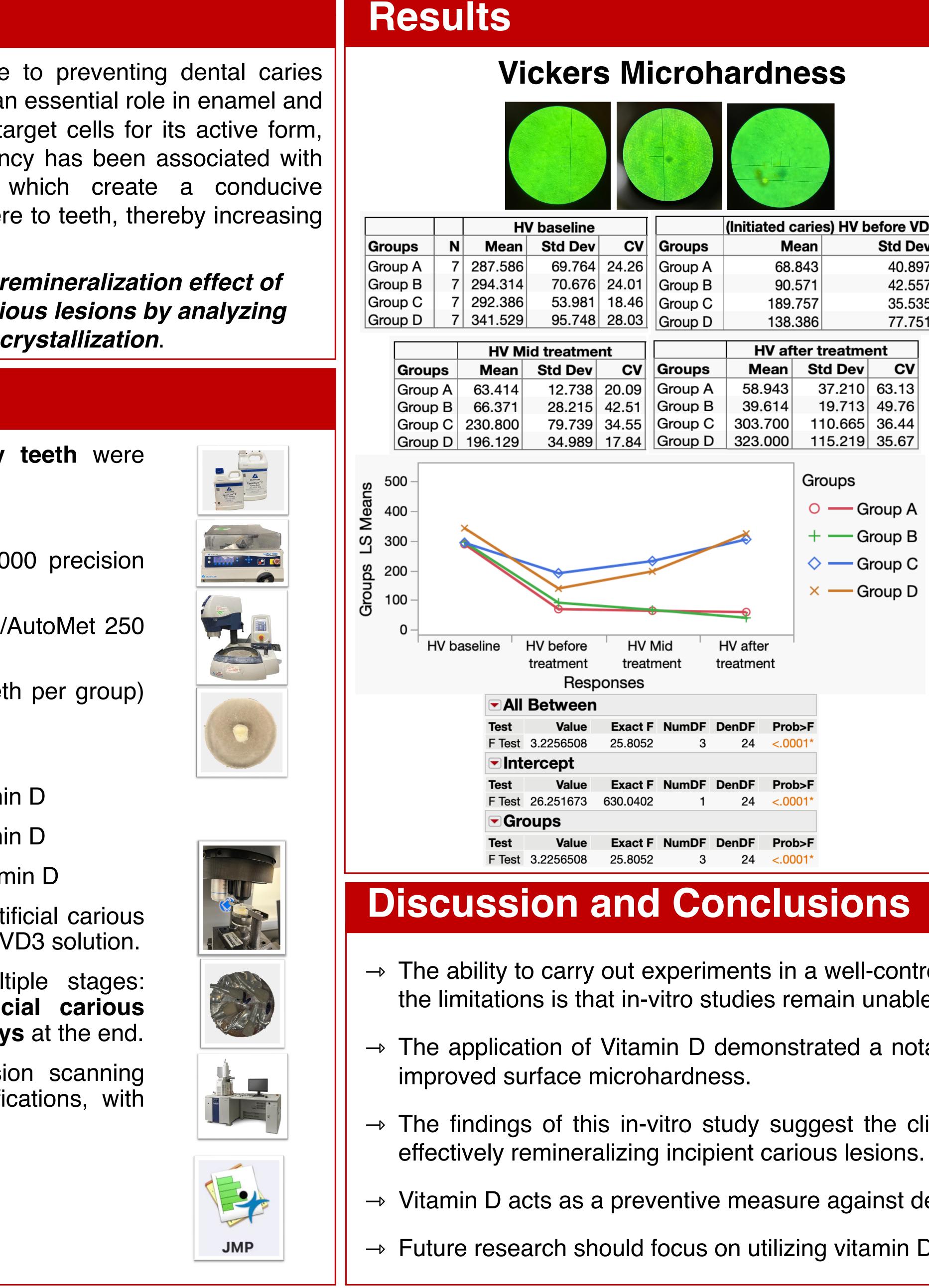
Boston University Henry M. Goldman School of Dental Medicine

Remineralization Effects of Salivary Vitamin D on Primary Dentition Caries

Background

Exposure to vitamin D during early life may contribute to preventing dental caries through various potential mechanisms.¹ Vitamin D plays an essential role in enamel and dentin formation, as ameloblasts and odontoblasts are target cells for its active form, 1,25-dihydroxyvitamin D.² Additionally, vitamin D deficiency has been associated with neonatal enamel hypoplasia and hypocalcification, which create a conducive environment for cariogenic bacteria to colonize and adhere to teeth, thereby increasing caries risk.^{2,3}

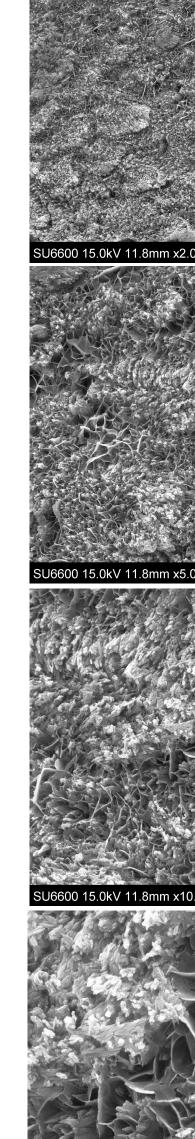
The aim of this in-vitro study is to investigate the remineralization effect of salivary vitamin D (VD3) on artificially initiated carious lesions by analyzing changes in enamel microhardness and crystallization.


Materials and Methods

- → Total of **31** unidentified extracted human primary teeth were selected for the purpose of this in-vitro study.
- \rightarrow Teeth were embedded in epoxy resin for stabilization.
- → Sectioning of teeth was performed using IsoMet 5000 precision saw.
- → Polishing was conducted using Buehler EcoMet 250/AutoMet 250 polisher.
- \rightarrow Teeth were randomly divided into 4 groups (n=7 teeth per group) based on vitamin D concentration.
 - → Group A: Control group Artificial saliva⁴
 - \rightarrow Group **B**: Artificial saliva with **20 nM** of vitamin D
 - \rightarrow Group C: Artificial saliva with 40 nM of vitamin D
 - → Group **D**: Artificial saliva with **100 nM** of vitamin D
- → Treatment cycling included 8 hours immersion in artificial carious solution,⁴ rinsing with distilled water, and **16 hours** in VD3 solution.
- \rightarrow Vickers microhardness testing conducted at multiple stages: before the experiment, after exposure to artificial carious solution, midway through the study, and after 10 days at the end.
- → Enamel crystallization examined using field emission scanning electron microscope (FESEM) with various magnifications, with one tooth analyzed from groups A, C, D.

• Data Analysis:

- \rightarrow JMP Pro 17 software.
- \rightarrow Descriptive analysis and multiple factorial ANOVA.


Noor Al Shaltoni¹, Keri Discepolo¹, Yuwei Fan² ¹Pediatric Dentistry Department, Boston University Henry M. Goldman School of Dental Medicine, ²Department of Restorative Sciences and Biomaterials, Boston, MA

	(Initiated caries) HV before VD					trea	atment	
Groups	М	ean	Std De				CV	1
Group A	68.	843		40.897			59.41	
Group B	90.	571		42.557			46.99)
Group C	189.	757		35.535			18.73	;
Group D	138.	386		77.75	51		56.18	;
HV after treatment								
Proupe	Mean Std Dev			CV				
àroups								
Group A	58.943		210	63.13				
Group B	39.614	19.	713	49.76				
Group C	303.700	110.	665	36.44				
Group D	323.000	115.	219	35.67				
	Groups				-	→	The	
		O — Group A					enar micr	
	×							

mean values of mel surface rohardness exhibited a noticeable **increase** in the VD3-treated groups compared to the control group and VD3 deficient group.

 \rightarrow There is a **statistically** significant difference in enamel surface microhardness among groups B, C, D and control group A (**p< 0.05**).

→ The ability to carry out experiments in a well-controlled environment is advantageous for this type of study. However, one of the limitations is that in-vitro studies remain unable to fully simulate the complex biological processes involved in caries.

→ The application of Vitamin D demonstrated a notable enhancement in the densely crystalline enamel morphology and an

-> The findings of this in-vitro study suggest the clinical importance of maintaining optimal vitamin D levels in children for

 \rightarrow Vitamin D acts as a preventive measure against dental caries and related complications.

 \rightarrow Future research should focus on utilizing vitamin D as an active agent in preventive materials

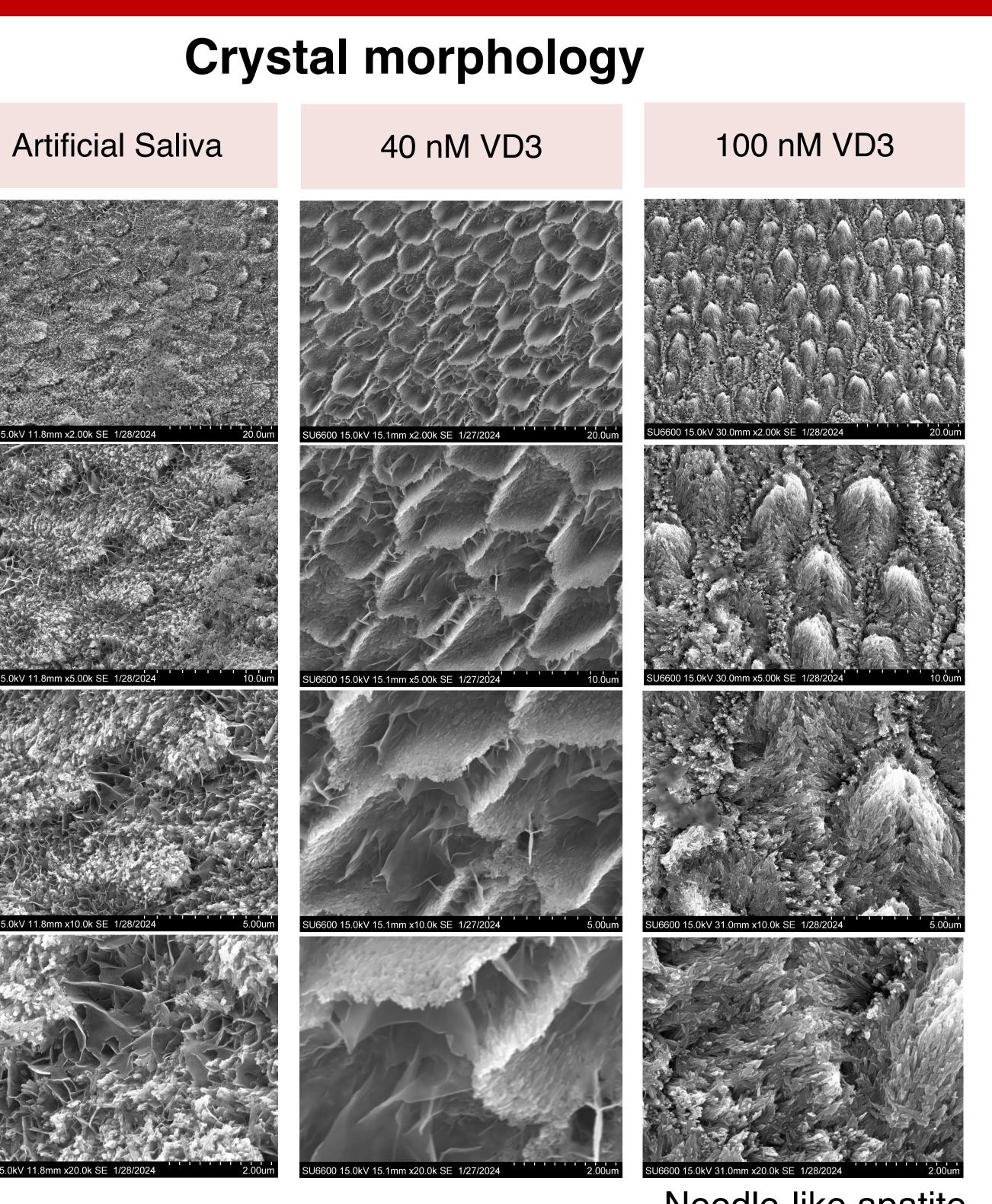


Plate-like crystals

Needle-like apatite crystals.

Reference

Please scan for references