

Comparing Noise Production of Pediatric Dental Instrumentation Techniques

Elizabeth Mechas DMD • Timothy Hsu, PhD, MS, MA • Christopher Discolo, MD, MSCR • Kamolphob Phasuk, DDS, MS • Angela M. Yepes, DDS, MS, MBA • George Eckert, MS • Allison C. Scully, DDS, MS, FAAPD Indiana University School of Dentistry • Riley Hospital for Children • Indianapolis, Indiana

BACKGROUND:

- Sound: Vibrations that travel through the air or medium that can be heard.
- Sound Measurements:
 - Frequency [Hertz]: Pitch of sound (1)
 - Loudness [decibels, dB]: Magnitude of sound pressure/volume a logarithmic ratio
 - A-weighted decibel (dBA): uses A metering which better represents human hearing (1,2).
- Noise: Unwanted sound
 - Increasing problem during dental procedures
 - One of the 10 leading causes of work-related diseases or injuries (3).
- The Occupational Safety and Health Administration (OSHA) sets guidelines for noise exposure.
 - Permits exposures of 90 dBA for 8 hours
 - Uses a 5 dBA time intensity tradeoff.
- Noise above threshold levels is known to cause auditory damage, disturb sleep, disrupt concentration, impair learning, and interfere with communication (4).
- Noise generated from the dental equipment (highspeed handpieces and isolation/evacuation) produces high frequency sounds. (5)

PURPOSE:

Compare the noise generated by different instruments used in pediatric dentistry:

- 1) Type of handpiece (high-speed air driven (AD) and an electric) (EI),
- 2) Type of isolation system (rubber dam with a high-volume evacuation (RD + HVE) and Dryshield system) (DS).

METHODS:

- Sound Data Collection
 - Background Noise: Sound Level Meter (SLM) (Larson Davis Model 831C)
 - Individual Sound Exposure: Noise dosimeter (Larson Davis Spartan 730)
- Noise Production: Data collected while preparing human molars (mounted in a pediatric typodont) for stainless-steel crowns using a high-speed handpiece and isolation/evacuation for 5 minutes.
- Statistics: The effects of the type of handpiece (air, electric) and isolation (rubber dam with high-volume evacuation, Dryshield) on noise level were analyzed using two-way ANOVA.

INSTRUMENTATION/RESULTS:

Figure 1A: Air driven handpiece

Figure 1B: Electric handpiece

F B

Figure 2A: Molar teeth mounted in typodont with RD/HVE Figure 2B: Molar teeth mounted in typodont with DS

SLM Summary: A-weighted Spectrum

Dosimeter Summary: A-weighted Spectrum

AD + RD/HVE AD + DS

BO EI + RD/HVE EI + DS

TO 30

20

100

Too 1000

Frequency

Figure 4: In general, AD + DS and EL + DS both have more high frequency energy than AD + DS and EL + DS.

There were no differences in peak sound levels between any of the groups (P > 0.05).

RESULTS:

Figure 5: SLM data showed the air driven handpiece with Dryshield was statistically the loudest, generating an equivalent continuous sound pressure level of 80.7 dB LAeq (p<0.001).

Figure 6: Dosimeter data showed that both the handpieces with Dryshield were statistically the loudest, 84.9 dB LAeq and 86 dB LAeq respectively, (both p<0.001).

LAeq is reported in units of A-weighted decibels.

CONCLUSION:

- None of the pediatric dental instrument combinations studied reached the LA_{eq} = 90 dBA limitation for 8 hours set by OSHA.
- Although the noise levels were not above regulatory recommendations to prevent long term hearing loss, practitioners should still consider hearing protection based on individual exposure.

