

Impact of Device Standardization to Prevent Hemodialysis

Catheter Central Line-Associated Bloodstream Infections (HD-CLABSI) in a Large Healthcare System

E. Jackie Blanchard, MSN, RN, CIC; A Julia Moody, MS SM (ASCP), CIC; James Pittman, MSN, RN; Dana Blayney MSN, RN; Darah Fraker MS, CHDA, Ken Sands, MD MPH F

A Vice President, Infection Prevention & Nursing Excellence (NEx), Clinical Services Group, HCA Healthcare; Assistant Vice President, Transplant/Dialysis Services, Clinical Services Group, HCA Healthcare; Assistant Vice President, Transplant/Dialysis Services, Clinical Services Group, HCA Healthcare; Consulting Biostatistician, Clinical Services, Clinic

Background

- Large U.S. based healthcare system of 180+ hospitals
- Internal data identified one-third of CLABSI cases correlated to patients who also had a hemodialysis (HD) catheter
- HD catheter end caps protect lumens from non-dialysis care access. Products varied from gauze to generic end caps to antimicrobial impregnated end caps.

Objectives and Methods

Aim 1: Implement a Standardized HD Catheter Endcaps

- Supply chain sourced an antimicrobial barrier end cap specific for HD catheter lines. Product availability placed in location specific-dialysis and critical care units only. Tracked purchase data implied use.
- Phased implementation by geographic regions over 12 months included (i) user education: software training module, unit posters, hands on demonstrations and (ii) virtual coaching calls with unit leaders & educators. Adoption verification was by tracer observations.
- Full enterprise implementation occurred by end of 2022.

Aim 2: Impact Evaluation and Outcomes of Standardization

- CLABSI events were sourced from NHSN and abstracted by a centralized team. EHR nursing documented dialysis catheter identified HD sub-population of CLABSI cases.
- Return-on-investment [ROI] business plan based on harm avoided, CLABSI cost avoidance and product costs was developed for operational assessment.
- R statistical analysis on HD populations April 2021 –
 September 2023. Procedure and revenue codes and other
 financial data were also used to identify dialysis patients.
 Exclusions: Patients <18 years old, CLABSI present on
 admission and length of stay <3 days (not an HAI case).

Updated Results

Number of patients (n =)

CLABSI rate (%, n)

Table 1. Dialysis CLABSI Logistic Regression Results				
Factor	Odds Ratio	95% Confidence Interval	p-value	
Age (years)	1.00	0.99 - 1.00	0.144	
Gender (Reference = female)	1.08	0.91 - 1.29	0.382	
Triple dialysis catheter	0.97	0.78 - 1.20	0.767	
Multiple catheters	3.00	2.45 - 3.68	0.000	
Elixhauser Comorbidity Score	1.00	0.99 - 1.01	0.661	
Renal Failure Type (Ref = acute)				
Chronic	0.91	0.71 - 1.17	0.474	
Unknown	0.84	0.20 - 3.45	0.809	
COVID-19	1.76	1.40 - 2.22	0.000	
Skin Ulcer Present on Admission	1.64	1.32 - 2.04	0.000	
BSI Present on Admission	1.49	1.23 - 1.80	0.000	
Catheter Location (Ref = subclavian)				
Femoral	0.97	0.64 - 1.47	0.889	
Neck	0.97	0.75 - 1.27	0.844	
CHG Impregnated end cap	0.97	0.74 - 1.26	0.823	
Notes: Estimates generated using logistic Abbreviations: BSI = Blood Stream Infect	_		ate	

	<u> </u>		
Average age (SD)	63.6 (14.8)	62.8 (14.7)	< 0.001
Male (%)	55.3% (16,384)	56.1% (28,095)	0.046
Triple-dialysis catheter (%)	26.1% (7,737)	30.6% (15,315)	< 0.001
Multiple catheters (%)	18.8% (5,573)	20.9% (10,466)	< 0.001
Severity on admission (%)			< 0.001
ICU	21.5% (6,352)	24.6% (12,320)	
None	65.3% (19,341)	63.0% (31,594)	
Mean Comorbidity Score (SD)	9.5% (17.7)	9.5% (17.8)	0.335
Renal Failure Type (%)			< 0.001
Acute	10.8% (3,201)	12.0% (6,010)	
Chronic	88.6% (26,240)	87.4% (43,803)	
COVID-19 (%)	5.5% (1,631)	12.1% (6,074)	< 0.001
Ulcer present on admission (%)	12.3% (3,629)	13.8% (6,895)	< 0.001
BSI present on admission (%)	28.5% (8,428)	29.9% (14,964)	< 0.001
Dialysis mode (%)			< 0.001
CRRT	3.9% (1,163)	3.4% (1,723)	
HD	91.8% (27,163)	90.8% (45,495)	
SLED	1.3% (378)	0.5% (242)	

Sample Characteristics for Patients with Chlorhexidine Gluconate (CHG)-

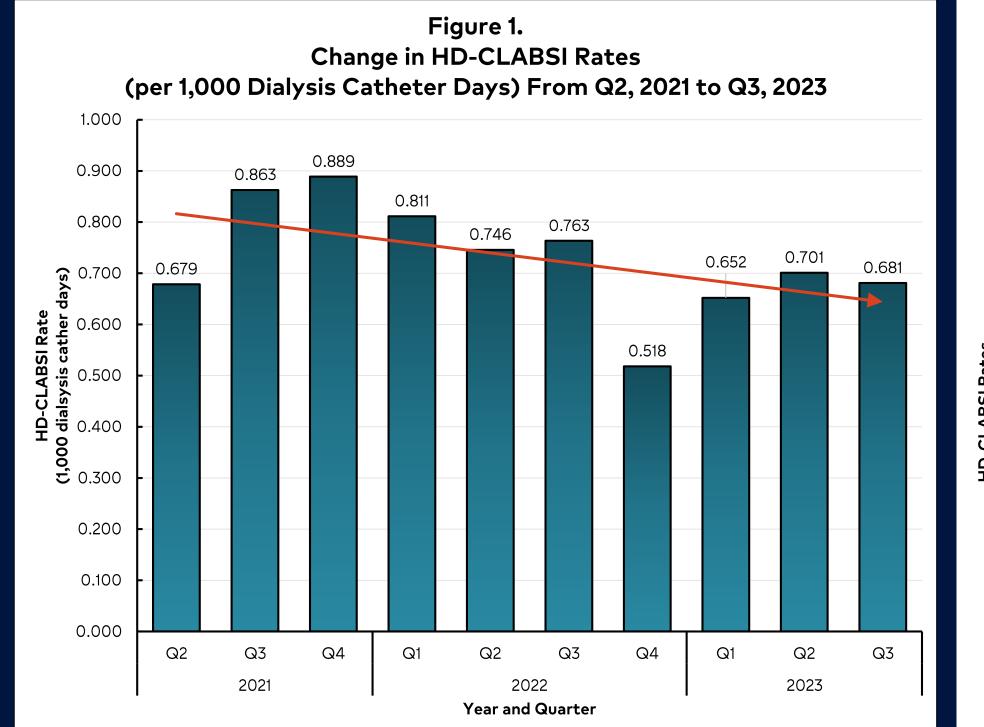
CHG-end Cap

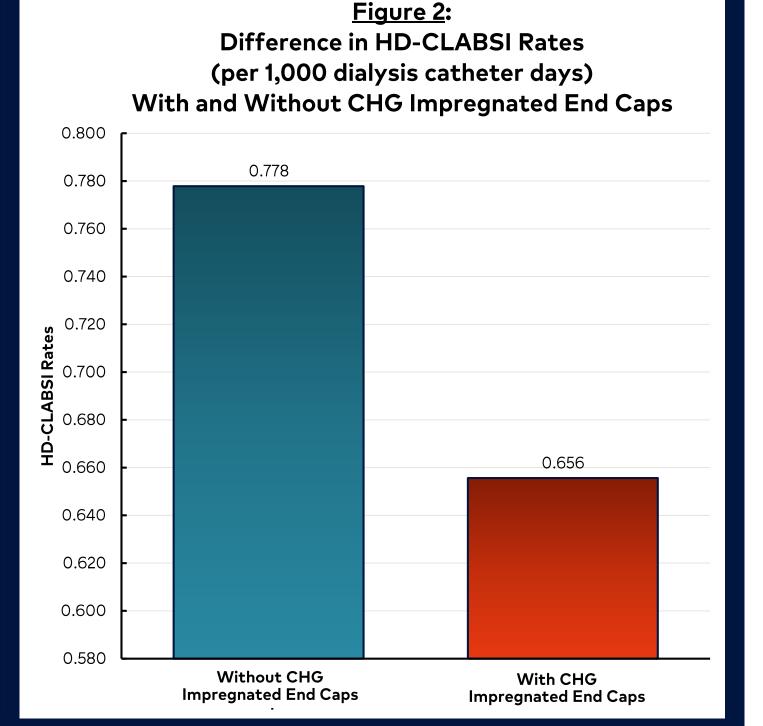
0.6% (169)

29,604

No CHG-end cap

0.7% (352)


50,113


p-value

0.029

Impregnated End Caps vs. Non-CHG End Caps

Notes: Continuous variables compared using independent samples *t*-tests; differences in continuous variable compared using Pearson Chi-squared test; Abbreviations: CRRT = Continuous Renal Replacement Therapy; HD = Hemodialysis; SLED = Sustained Low-Efficiency Dialysis; BSI = Blood stream infection.

Key Takeaways

- In Table 1, CHG-end cap use did not significantly impact overall HD-CLABSI reduction in a multifactor regression analysis. COVID infections peaked during early study periods.
- Table 2 shows that patients with CHG-end cap use had significant differences in clinical conditions, in part due to COVID infections and acuity.
- Figure 1 displays HD-CLABSI rates by quarter of preand post CHG-end cap use. Figure 2 shows dialysis CLABSI rates decreased by 16% with CHG-end cap use.
- Quarterly CHG-end cap purchases increased to a sustained volume in 3Q 2022 thru 2023.
- Post implementation HD-CLABSI cases were reviewed and identified 40% had clinical wounds/pressure injuries and 50% had clinical pneumonia which did not meet NHSN criteria for primary infection source.

Conclusion

- Device standardization decreased HD-CLABSI events via 1) ease of dialysis CVC identification; 2) increased staff accountability to avoid catheter use for care other than HD; 3) elimination of local solutions such as gauze and tape.
- HD-CLABSI rates decreased and event reduction met internal ROI goals. Analysis will continue to gain in post COVID epidemic peaks (CLABSI in COVID patients increased).
- Opportunities exist to reduce clinical conditions contributing to secondary bacteremia.

References

- 1. Centers for Disease Control and Prevention (CDC). <u>Dialysis Safety</u> 2023
- 2. Centers for Disease Control and Prevention (CDC). HAI Progress Reports 2022
- 3. 2024 S.94 Infusion Nurses Society (INS) Guidelines: Standard of Practice 27.3 Vascular Access and Hemodialysis Section.
- . Brunelli SM, Van Wyck DB, Njord L, Ziebol RJ, Lynch LE, Killion DP. Cluster-Randomized Trial of Devices to Prevent Catheter-Related Bloodstream Infection. J Am Soc Nephrol. 2018;29(4):1336-1343. doi:10.1681/ASN.2017080870
- . Hymes JL, Mooney A, Van Zandt C, Lynch L, Ziebol R, Killion D. Dialysis Catheter-Related Bloodstream Infections: A Cluster-Randomized Trial of the ClearGuard HD Antimicrobial Barrier Cap. Am J Kidney Dis. 2017;69(2):220-227. doi:10.1053/j.ajkd.2016.09.014
- 6. Sands KE, Blanchard EJ, Fraker S, Korwek K, Cuffe M. Health Care–Associated Infections Among Hospitalized Patients With COVID-19, March 2020-March 2022. JAMA Netw Open. 2023;6(4):e238059. doi:10.1001/jamanetworkopen.2023.8059.