Are Compromised Support Surfaces a Vector for Transmission?

Tochukwu Ikpeze, MD; Jay Hamilton, MHL, RN, CSPHA, CPPS, CWS; Gregory Manista, MD

INTRODUCTION

- From scrubbing in, to sterile fields, the focus on infection prevention is a standard for all surgical care.
- In acute care hospitals, the prevalence of damaged mattresses tends to be the highest in the operating room (OR), emergency room (ER), and medical inpatient units, respectively.¹

OBJECTIVE

 The purpose of this testing was to examine the potential contamination risks when OR table pads lose their outer structural integrity.

METHODS

- Utilizing Wet Bacterial Penetration (WBP)
 testing it was determined that "nondisrupted" surfaces (no tears, frays, abrasions,
 or any other disruptions to the
 manufacturer's design) were impervious to
 fluid.
- Provided that the support surface was impermeable, the team employed the Martin Dale Fraying test in further attempts of surface disruption.
- Utilizing the Martin Dale Fraying test, a simulated 175,000 rub cycle was completed on the support surface cover.
- The choice of 175,000 rubs was used to simulate cleaning cycles based on the average amount of OR cases in a OR Table pads normal life-cycle (3 years): 10,452 cases. (67, SD=14 case per weekday)².
- After this simulated rub cycle, the surface remained intact.
- As, such, the team then made incisions of varying sizes (.25", .5", .75", 1", 2") and reperformed the WBP testing.

Wet Bacterial Penetration (WBP) Test

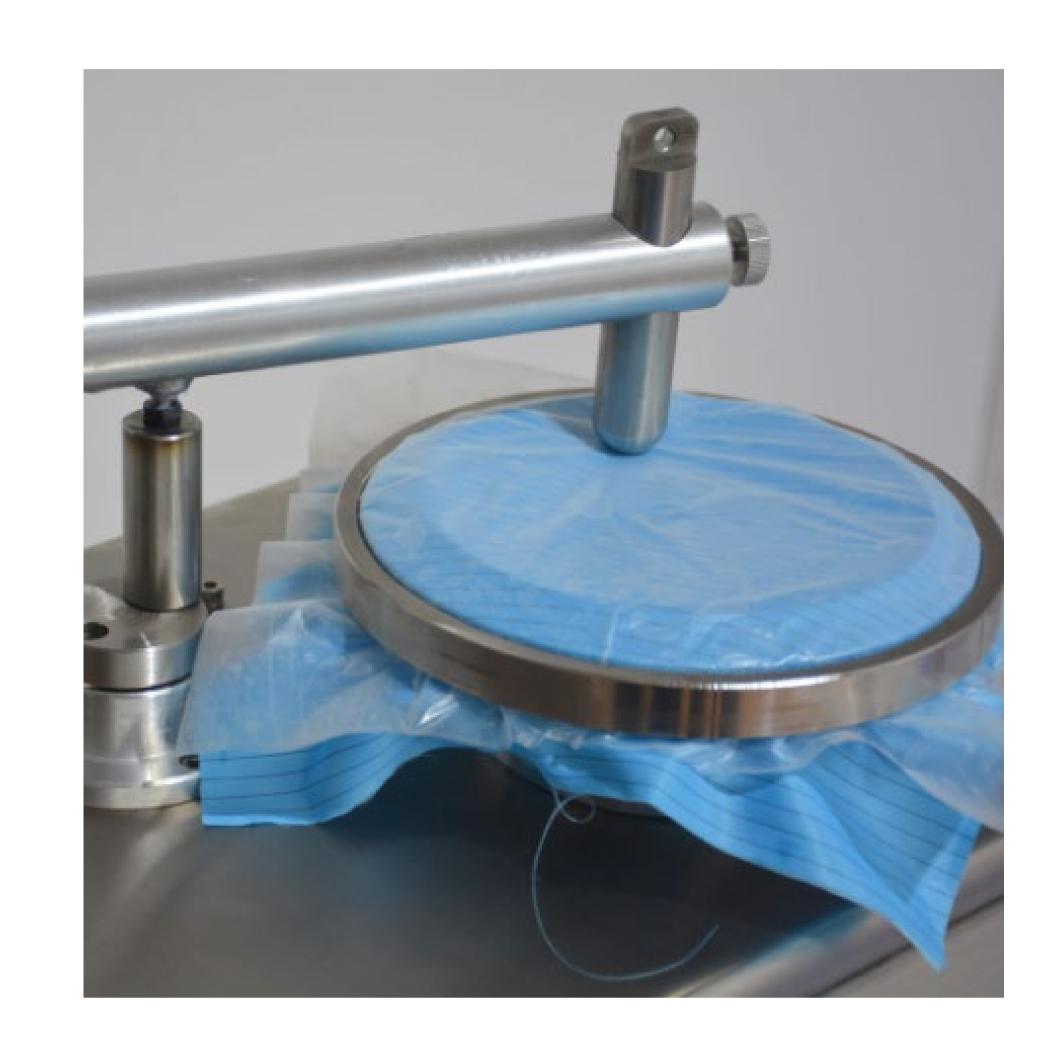


Figure 1: Wet Bacterial Penetration (WBP) test to determine surface disruption.

Martin Dale Fraying Test

Figure 2: Martin Dale Fraying test to simulate 175,000 rub cycles.

Table 1. Results						
Sample	OR Pad Outer Soft Vinyl Material		Distance of Agar from Brim		3.0 mm	
Carbon Control	Pass		Inoculum Verification		3.9 x 10 ⁴ CFU/mL	
Colony Counts (CFUs)						
Sample	Plate Number					
	Plate 1	Plate 2	Plate 3	Plate 4	Plate 5	Plate 6
1 (0.25 in. Incision)	25	9	6	6	1	0
2 (0.5 in. Incision)	2	0	1	0	0	15
3 (0.75 in. Incision)	28	31	4	0	0	57
4 (1.0 in. Incision)	0	0	0	0	0	0
5 (2.0 in. Incision)	108	6	1	1	1	2

Table 1: There was a 149% increase in penetration from smallest incision test sample to the largest incision test sample on plates 1-5. Test plate 6 was not included in the calculation as it is used as an approximation of bacteria left on the sample after each test run.

METHODS (CONT'D)

- Percentage Increase (% increase) was calculated as follows:
 (Largest Incision Recovery (Total CFUs Plates 1-5) Smallest Incision Recovery (Total CFUs Plates 1-5) ÷ Smallest Incision Recovery (Total CFUs Plates 1-5)) x 100.
 ((117 CFUs 47 CFUs) ÷ 47) X 100 = 149%
- Test plate 6 was not included in the calculation as it is used as an approximation of bacteria left on the sample after each test run.

RESULTS

- Using the WBP test and prior to making the varying incisions, it was determined that a non-disrupted surface (no tears, frays, abrasions, or any other disruptions to the surface) was impervious to any fluid.
- After creating incisions of varying sizes, the WBP testing revealed that there was a 149% increase in fluid penetration or organism recovery from the lowest disruption (.25") to the highest (2") disruption.

CONCLUSION

- These results highlight the need for proper support surface inspections as larger disruptions are associated with increased colony growth.
- While these results do not directly correlate to an increased risk of communicable pathogen colonization and subsequent spread, they do cause concern for compromised surfaces as a vector for transmission.

REFERENCES

- 1. Marks, B. (2016). Uncovering the prevalence of damaged mattresses. Explore (Spring), 17-18.
- Zinouri N, Taaffe KM, Neyens DM. Modelling and forecasting daily surgical case volume using time series analysis. Health Syst (Basingstoke). 2018 Jan 15;7(2):111-119

This poster was sponsored by Medline Industries, LP. Northfield, IL

Presented at APIC Spring Conference June 3-5, 2024