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INTRODUCTION
● 42,065 people died in the US from opioid
overdose in 2022 alone.1

● Medications for opioid use disorder
(MOUD) are effective treatments but
accessible by only a minority of patients2
(left figure).

● Our research seeks to: (1) identify and
rank which factors are most important in
predicting if a patient will receive MOUD;
and (2) explain why unhoused patients
have lower MOUD access rates.

METHODS
● MOUD access is a multifactorial issue which can be explored
with machine learning and a large dataset.

●We utilize a gradient boosted decision tree algorithm (XGBoost)
to train our model on SAMHSA’s Treatment Episode Data Set3
of opioid admissions (n=524,134; features=57).

●We use Shapley values to quantify and interpret the predictive
power and influencing direction of individual features (variables).

RESULTS

CONCLUSION
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● The rise of opioid use disorder1 with homelessness2,4 poses a public
health crisis; this can be attenuated with increased MOUD access.

● Achieving parity in MOUD access between housed and unhoused
patients should involve improving access to service settings that have
high rates of MOUD treatment.

● Our model is effective in
predicting access to MOUD
with an accuracy of 85.6%
and AUC of 0.94.

● Roughly half of the model’s
predictive power emerges
from geographic location
(25.3%) and facility type
(24.0%) alone. The 57
features can be grouped into
7 categories (right figure).

●We find that unhoused
patients more often go
to facilities with lower MOUD treatment rates, and once there, are
less likely to receive MOUD than housed patients. This is visualized in
the left figures that show housed (upper middle figure) and unhoused
(bottom middle figure) admission and treatment rates.

● However, if unhoused patients instead went to the facilities that
housed patients enter at an equal percent (but still received MOUD at
the lower, unhoused rates), 89.50% of the disparity in MOUD access
would be eliminated.
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