Pressure redistribution properties of prophylactic dressings using an in vitro model with clinically relevant pressures and a novel sacral indenter

Kasey Call, BS¹, Marianne Russon¹, Sandra Guzman, PhD¹, Jordan Fisk, MSc², Evan Call, MS, CSM (NRM)³

¹EC Service, Corp., Centerville, UT, USA; ²Convatec Ltd., Deeside, UK; ³Weber State University, Ogden, UT, USA

Introduction

- Pressure injuries (PIs) have significant deleterious impacts on patients, healthcare professionals, and payors
- Recent clinical studies indicate that multilayer foam dressings may be an effective addition in the prevention of hospital-acquired PIs^{1,2}
- In vitro work has further demonstrated that these dressings can absorb and redistribute forces applied directly to the skin³

Study Objective

To evaluate pressure distribution properties of commercially available wound dressings used in high-risk body areas when applying clinically relevant interface pressures, using a novel sacrum model^{3,4}

Methods

- Five dressings were evaluated: A, B, C, D, and E
- A high-resolution pressure mapping system was used to test the pressure redistribution properties of the dressings
- The dressing was applied to a 6 mm thick silicone gel⁵ layer simulate overlying tissue), and a clinically relevant load (to (30 mmHg) was applied for 60 seconds using a novel sacral indenter. A control was performed using the same construct without a dressing applied (**Figure 1**)
- Six replicates were performed

Figure 1. Set up for testing

A: Dressing placed under silicone gel and on top of pressure map; B: Sacral indenter

Results

- All dressings showed a significant reduction in peak and average pressure and increase in contact area compared with the no dressing control (p≤0.001; **Figure 2** and **Figure 3**)
- Dressing A showed a significant reduction in peak pressure compared with dressings D and E, and in average pressure compared with dressing E only (p<0.001; **Figure 2**)

Figure 2. Comparison of the average pressure of tested products

Error bars represent 95% confidence intervals

Figure 3. Comparison of the contact area of tested products

Error bars represent 95% confidence intervals

- Dressing B showed a reduction in peak and average pressure compared with Dressings D and E; the difference was statistically significant only with Dressing E (p<0.001; Table 1)
- Dressing C is significantly lower than all other dressings in peak and average pressures (p<0.01, **Table 1**)
- Figure 4 shows the pressure map images of all the dressings and control

Table 1. Comparison of metrics calculated (α =0.05)

Product tested	Contact area (cm²)	Peak pressure (mmHg)	PPI (mmHg)	Average pressure (mmHg)
Control	$\textbf{6.52} \pm \textbf{0.22}$	50.36 ± 1.21	$\textbf{42.12} \pm \textbf{1.37}$	21.5 ± 0.77
Dressing A	10.6 ± 0.47	26.24 ± 0.65	23.27 ± 0.89	12.61 ± 0.42
Dressing B	10.06 ± 0.39	$\textbf{27.48} \pm \textbf{0.52}$	$\textbf{23.84} \pm \textbf{0.48}$	12.44 ± 0.4
Dressing C	11.43 ± 0.47	$\textbf{22.91} \pm \textbf{0.95}$	19.38 ± 0.74	10.44 ± 0.25
Dressing D	10.12 ± 0.34	$\textbf{29.43} \pm \textbf{1.82}$	$\textbf{23.33} \pm \textbf{0.98}$	12.56 ± 0.11
Dressing E	$\textbf{7.73} \pm \textbf{0.30}$	$\textbf{43.9} \pm \textbf{1.99}$	$\textbf{37.61} \pm \textbf{1.29}$	18.33 ± 0.55

PPI, peak pressure index

Figure 4. Comparison of pressure maps

Presented at Symposium on Advanced Wound Care (SAWC) Spring 2024, May 14–18, Orlando, USA

Discussion

- Using an anatomically accurate sacral indenter and clinically relevant testing pressure, these findings indicate that dressings A and B provide a significant reduction in interface pressure compared with no dressing
- Dressings A and B also showed comparable or improved pressure reduction compared with most other test dressings

Conclusion

These data suggest that these dressings may be considered as a component in the toolkit of **PI prevention protocols**

References

- Walsh NS et al. J Wound Ostomy Continence *Nur* 2012:39,146–149.
- Santamaria N et al. Int Wound J 2015;12(3):302–308.
- NPIAP Guidelines: Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline.
- Call E et al. *Int Wound J* 2015;12(4):408–413. 4.
- Section 6 Annex A. Test Apparatus Description: Sensored Hemisphere. In: American National Standard for Support Surfaces—Volume 1: Requirements and Test Methods for Full Body Support Surfaces. Arlington, VA: Rehabilitation Engineering and Assistive Technology Society of North America (RESNA); 2019.