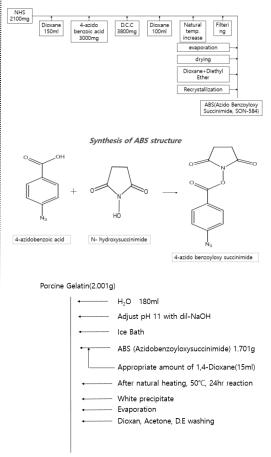
Tissue-Engineered Full-Thickness Artificial Skin Using Visible Light-Curable Gelatin with Autologous Dermal Fibroblasts and Epidermal Keratinocytes

Department of Plastic Surgery Korea University Medical Center Kyung-Chul Moon, MD, PhD

Introduction

The purpose of this study was to introduce hydrogel material for development of tissue-engineered full-thickness artificial skin using visible light-curable gelatin with autologous dermal fibroblasts and epidermal keratinocyte for treating wounds.


Materials and Methods

Cultured autologous fibroblasts were seeded on the visible light-curable gelatin and gelatinization was occurred. After fibroblast gelatinization, cultured autologous keratinocytes were seeded on the layer of fibroblasts to create fullthickness artificial skin.

To create tissue-engineered full-thickness artificial skin using visible light-curable gelatin with autologous dermal fibroblasts and epidermal keratinocytes, we need to develop the hydrogel using gelatin/ABS (azido benzoyloxy succinimide) and FITC-BSA using confocal dish.

Results

First of all, our group produced and synthesized ABS structures as following methods. After synthesis of ABS structure, we produced hydrogel type for visible lightcurable gelatin for cell-seeding scaffold to create the tissue-engineered full-thickness artificial skin.

Production of ABS(Azido Benzovloxv Succinimide)

Hydrogel for visible light-curable gelatin

Conclusion

Tissue-engineered full-thickness artificial skin using visible light-curable autologous dermal fibroblasts and epidermal keratinocytes may be an effective and safe for treatment of wounds. We look forward to create the gelatin for tissue-engineered full-thickness artificial skin and larger pivotal in vivo studies to confirm these initially promising findings.