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Significance Results

Type 2 Diabetes affects more than 37 million people in the United States and is the number one cause of non-traumatic lower- For this project, we collected debrided wound tissue from patients who were enrolled in the Wound Care Clinic at the Boise VA Medical Center. A
limb amputation in adults due to diabetic foot ulcers (DFU) The chronic wound microenvironment consists of a complex total of 45 samples were collected. 20 samples were taken from 6 different patients who responded to treatment and are designated as Responders. 25
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. i : ; : : ] : : samples were from 7 patients who failed to respond to treatment and are designated as Non-Responders. The table (A) details patient demographics
milieu of hO_St cells, mICI‘ObIa! Specles, and meta_lbollt_es. V_Vh”e_ much is known abF’Ut Fhe_W9und microbiome, our !(nOW|eC_|ge of — and clinical markers collected for each sample. The difference plot (B) highlights those clinical markers that were significantly associated with
the metabolic landscape and its influence on microbial diversity and wound healing is limited. Furthermore, the integration of Responders (blue) and Non-Responders (red).
these complex datasets into a predictive model with relevance to clinical outcome is almost non-existent. Here, we present a Clinical Markers
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The heat graph taxonomic tree (A) shows the hierarchical structure of taxonomic ranks of the 91 unique bacterial genera that were selected into the
model. Different colors are used to highlight differentially abundant taxa, based on log, median ratio between Non-Responders in red and Responders in
blue. Among all phyla (B), Non-Responders had more Firmicutes present in their wounds whereas Responders had more Proteobacteria. When we look at

T~ e e 634 Truepera specific genera, we can see that three common and dominant wound-associated pathogens are present in Firmicutes phylum.
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For the metabolome, 420 features were selected into the model. The radar plot depicts the number of metabolite features that are present within the
identified metabolite subclasses. On this plot each radiating line of the plot represents a metabolite subclass with the outer potion of the colored
section corresponding to the number of metabolites identified within each subclass for both Responders in blue and Non-Responders in red. Most
notably, Responder wounds (blue) contained more metabolites associated with amino acids and their derivatives and metabolites associated with anti-
inflammatory pathways in contrast to metabolite subclasses represented in Non-Responders (red) which had an over abundance of fatty acids and
metabolites related to carbohydrate metabolism and glycolysis. When these metabolites are mapped onto metabolic pathways, we see that the
metabolic pathways enriched in Responders are primarily associated with pathways that are critical for wound resolution; however, the pathways
enriched in Non-Responders are skewed towards acute and chronic inflammation.
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The circle plot includes 527 features selected into the model which displays features selected into the model, as well as relationships among features (A).
Each dot represents a model features plotted in 2D space, indicating their correlation with model components one (x-axis), and two (y-axis). The dashed
circles are guides representing correlations of +0.5 (inner circle) and +1 (outer circle). Features closer to the outer circle are more important for
Correlation predicting the outcome. The location of individual features relative to other features indicate whether those feature are positively or negative correlated
m m with one another (B). The angle made by connecting two features through the origin gives the sign of their correlation. Acute angles indicate positive

'8 28 2 B correlations (red and green), obtuse angles represent negative correlations (purple), and right angles indicate no correlation (blue). Moreover, the length
Metabolome 420 - - of the connecting lines gives the magnitude of the correlation. For example, the angle made by the red and green lines is identical, but the red lines are
Microbiome 91 C||n|Ca| I”Slghts longer, indicating a stronger positive correlation between the red features relative to the green features. Along component one, Enterococcus and
Methylobacterium (green circles) are negatively associated with one another and have mirror-image relationships to the metabolite clusters on the left

Clinical Markers 16 2 Much of the clinical microbio|ogy data is limited to culturable bacteria and lacks information on the impact of metabolic and right of the figure. Along component two, tryptamine and a ceramide group (orange circles) are positively correlated with each other and negatively
- ] ] ] ] ] ] . oo . correlated to the microbiome features towards the bottom of the graph.

Interaction between host and pathogen; this multi-omics approach, integrated with clinical outcome, provides a much more
o comprehensive view of host-pathogen interaction in a clinically-relevant model.
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*» Multiblock predictive modeling further supported the importance of investigating beyond the most abundant colonizing
microbes and delving into the most impactful microbes through contribution to the metabolic landscape.
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