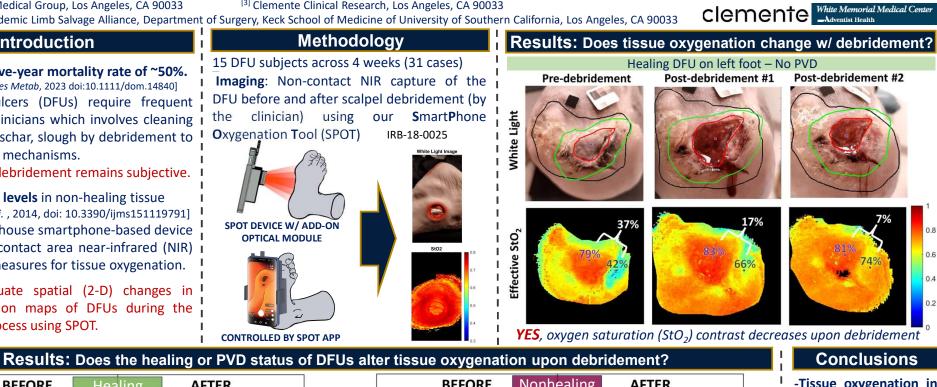
Image-guided Scalpel Debridement of Diabetic Foot Ulcers Using a Smartphone-based Tissue Oxygenation Tool

Daniela Leizaola^[1], Kacie Kaile^[1], Maria Hernandez Hernandez^[1], Renato Sousa^[2], Jose P. Ponce^[2], Stanley Mathis^{[2][3]}, Alexander L. Trinidad^[1], Nikhil K. Vedere^[1], Himaddri S. Roy^[1], Manuel I. Leizaola^[1], David G. Armstrong^[4], Anuradha Godavarty^[1],*

^[1] Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL 33174 ^[2] White Memorial Medical Group, Los Angeles, CA 90033 ^[3] Clemente Clinical Research, Los Angeles, CA 90033

^[4] Southwestern Academic Limb Salvage Alliance, Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033

Introduction


DFU patients: five-year mortality rate of ~50%.

[Chen, Diabetes Obes Metab, 2023 doi:10.1111/dom.14840] Diabetic foot ulcers (DFUs) require frequent monitoring by clinicians which involves cleaning of dead tissue, eschar, slough by debridement to promote healing mechanisms.

GAP: Assessing debridement remains subjective.

Low oxygen levels in non-healing tissue [Nauta, Int J Mol Sci., 2014, doi: 10.3390/ijms151119791] SPOT is an inhouse smartphone-based device capable of non-contact area near-infrared (NIR) imaging which measures for tissue oxygenation.

Objective: Evaluate spatial (2-D) changes in tissue oxygenation maps of DFUs during the debridement process using SPOT.

	BEFORE Healing AFTER			FTER			BE	FORE	Nonhe	ealing A	FTER	
Left foot	White Light Image	StO2 0.75 0.7 0.65 0.6 0.55 0.5	White Light Image	StO2 0.75 0.7 0.65 0.6 0.6 0.55 0.5	No PVD	Left foot - lateral below pinky	White Light Image	StO2	0.8 0.75 0.7 0.65 0.6 0.55	White Light Image	StO2	0.8 0.75 0.77 0.65 0.66 0.55
Left foot - plantar big toe		0.75 0.7 0.65 0.6		0.75 0.7 0.65 0.6 0.6 0.55 0.55	Yes PVD	Right foot - big toe		100	0.8 0.75 0.7 0.65 0.6 0.55 0.5		3%	0.8 0.75 0.65 0.65 0.55 0.5

NO, Change in StO₂ is independent of DFU healing status. Extent of debridement possibly has effect on StO₂ contrast

-Tissue oxygenation in the debrided areas increase. and not dependent on DFU healing or PVD status. -Ongoing efforts:

Objectively determine the effectiveness of debridement via tissue oxygenation contrasts

Acknowledgements

Partial funding support from NIH (1R01EB033413), FI-DYF Award (one coauthor), BME CURE Funds Staff at the clinical sites.

