

NTERNATIONAL UNIVERSITY

Smartphone-based Monitoring of Healing Status in Diabetic Foot Ulcers using Keck School of Tissue Oxygenation and Thermal Maps

Fernando S. Chiwo^[1], Daniela Leizaola^[1], Kacie Kaile^[1],Maria H. Hernandez^[1], Ricardo A. Avila^[1], Renato Sousa^[1], Jose P. Ponce^[2], Stanley Mathis^[2,3], Alexander L. Trinidad^[1], Nikhil K. Reddy^[1], Himaddri S. Roy^[1], Manuel I. Leizaola^[1], David G. Armstrong^[1], Anuradha Godavarty^[1]

[1] Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL 33174

[2] White Memorial Medical Group, Los Angeles, CA 90033 [3] Clemente Clinical Research, Los Angeles, CA 90033

[4] Southwestern Academic Limb Salvage Alliance, Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033

Medicine of USC

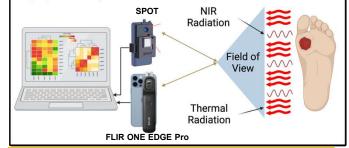
clemente

White Memorial Medical Center

INTRODUCTION

- Diabetes is a silent pandemic, with 1 in 3 patients developing Diabetic Foot Ulcers (DFUs), with the highest levels of morbidity and mortality worldwide.
- Visual Inspection of DFUs is the gold standard to assess DFUs by assessing size, warmth, smell, and oxygen.
- Post-pandemic era led to a critical necessity of tools to monitor the status of DFUs remotely.
- Imaging technologies have been used to monitor the healing progress of the wounds, but independently

OBJECTIVE


Combine RGB + tissue oxygenation + heat maps to assess the healing status of DFUs using smartphones-based devices.

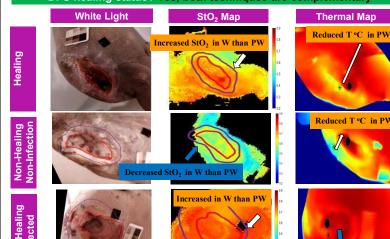
METHODS

Population: 17 DFU participants with different healing conditions Clinical Procedure: 4 Weeks of scalpel debridement

IRB-approved study (FIU IRB-13-0092)

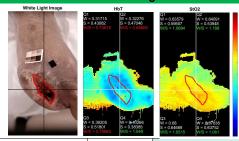
Imaging Technology: Smartphone-based NIRS or optical imaging device (SPOT) and a wireless handheld smartphone-based thermal imaging scanner (FLIR ONE EDGE Pro)

OPTICAL-THERMAL DATA PROCESSING AND ANALYSIS



ACKNOWLEDGEMENTS

Partial funding from NIH Grant No. 1R01-EB033413, FIU-DYF Award (one co-author), FIU-BME CURE Funds, staff at clinical sites


RESULTS: STUDY-1

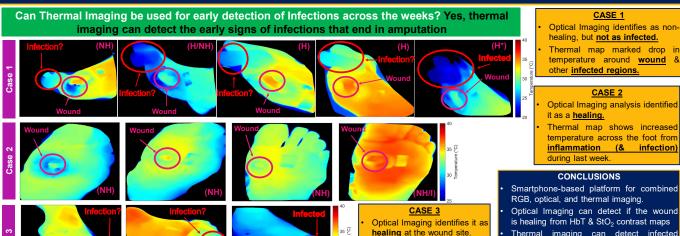
Can Optical Imaging be complemented with Thermal Imaging to assess DFU healing status? Yes, both techniques are complementary

Optical Imaging can differentiate between healing and non-healing DFU cases by monitoring its StO₂ maps, but not infection

Can Optical Imaging Differentiate Healing & Non-Healing DFUs? Yes, HbT & StO₂ contrast maps differentiate healing status

	DFU Status (Clinician)	DFU Status (SPOT)	Passing Rate	
	Healing (n=16)	Healing	13/16	81.25%
	Non- Healing (n=3)	Not Healing	4/5	80%
	NH w/ Infection (n=2)			

Thermal Imaging shows a distinct difference in inflammation/infected case, but not between healing and non-healing case


Thermal map could detect a

marked drop in temperature

around the wound & other

infected regions

RESULTS: STUDY-2

- Smartphone-based platform for combined
- Thermal imaging can detect infected regions distinctly & possibly early on.
- RGB/Optical/Thermal imaging modalities complement each other for improved DFU assessments.