Correlating Deep Vein Thrombosis in Femoral and Below Segments to Venous Leg Ulcer Incidence: Insights from a Retrospective Analysis

Lorena DeMarco Garcia, MD, Northwell Health, Plainview, NY

Background

Venous leg ulcer

- Post –thrombotic syndrome (PTS) occurs in up to **50% of patients** following acute DVT¹
- Venous leg ulcers (VLUs) occur in up to 20% of CVD patients, with more aggressive presentation in those with PTS²⁻³
- Estimates suggest 70 80% of leg ulcers stem from deep venous disease, with VLU wound care totaling nearly \$5B annually in the US⁴⁻⁶
- Despite high PTS rates, anticoagulation (AC) is the standard of care for DVT, as new advanced therapies have yet to show benefit over AC⁷⁻¹⁰
- Advanced therapies are only recently recommended for use in select, iliofemoral DVT .¹¹⁻¹³
- We evaluate initial thrombus locations in DVTrelated VLU patients and estimate long-term costs in a hypothetical model.

Methods

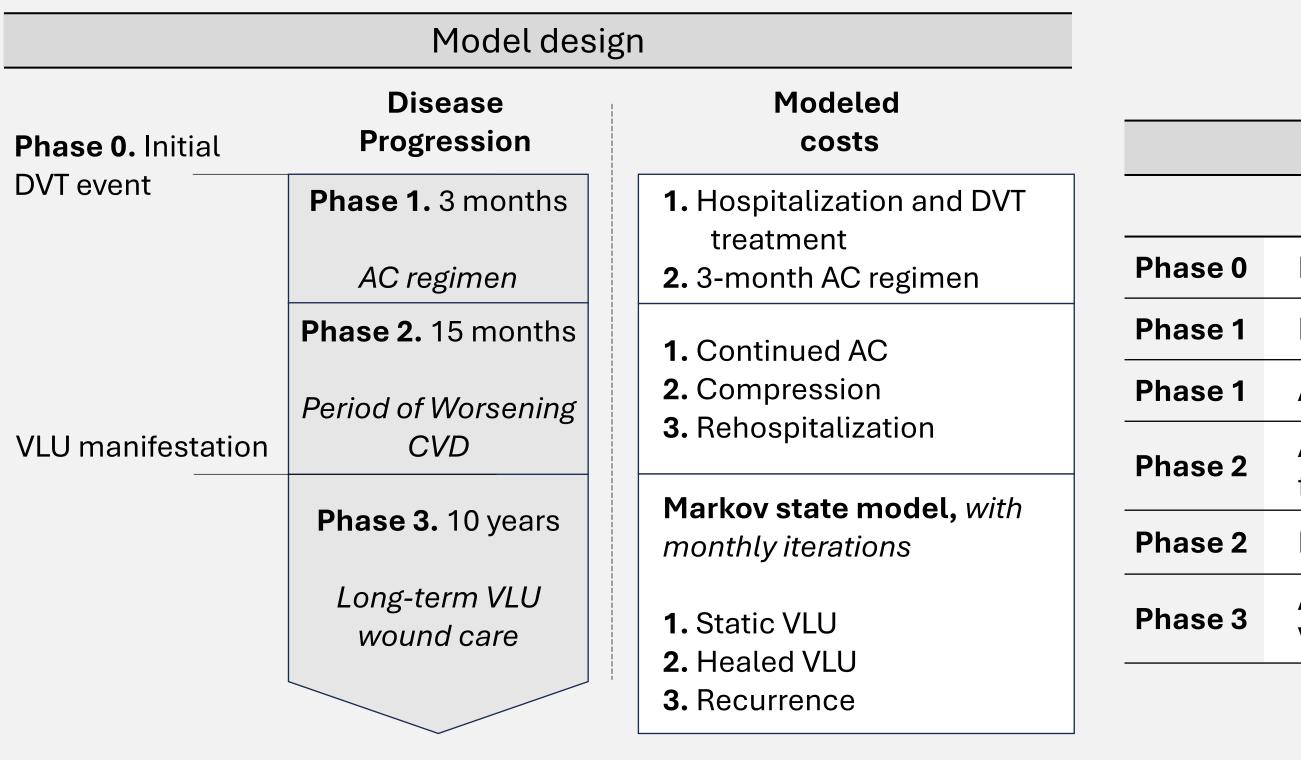
- The retrospective cohort consists of VLU patients identified to have a preceding DVT event by ICD-10-CM codes, imaging, and chart review
 - Median initial DVT event occurred 07/2020 (IQR: 06/2018 - 01/2022)
 - Median time to VLU onset was 466 days (IQR: 51-1190)
- The model estimates costs in a hypothetical 2. cohort of 100 patients progressing **from initial DVT** through long-term VLU care
 - Inputs derived from published literature
 - Costs estimated based on expected health status across three phases of disease progression
 - All-cause mortality is accounted for at each model step Treatment effectiveness at avoiding VLUs is unknown and treated as a variable

¹Kahn et al., Ann Int Med, 2008. ²Gloviczki and Yao, AVF Guidelines, 1996. ³Labropoulos et al., JVS, 2008. ⁴Berggvist et al., Euro Heart J, 2018. ⁹Ortel et al., Blood Advances, 2020. ¹⁰Stevens et al., JVIR, 2023. ¹²Douketis et al., Am J Med, 2001. ¹³Yamaki et al., EJVES, 2011.

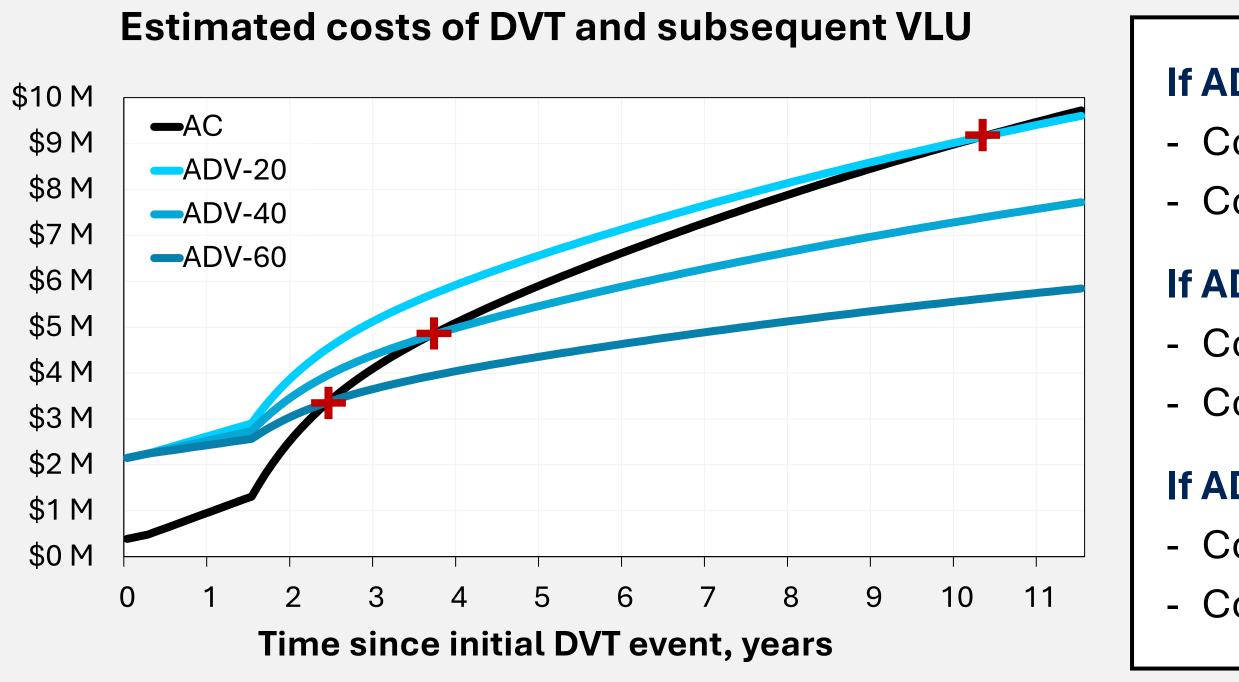
Aim 1: We retrospectively analyze the anatomic location of preceding DVT events in current VLU patients at our single, high-volume center.

Thrombus location at initial DVT event in **N=73** patients that later developed VLUs

Disease Characteristic	N (%)
DVT side	
Bilateral	20 (27.4)
Left	30 (41.1)
Right	23 (31.5)
DVT location	
llio-fem-pop	4 (5.5)
Isolated fem-pop	43 (58.9)
Fem-pop-below-the-knee	11 (15.1)
Isolated below-the-knee	15 (20.5)
Venous segment involvement	
lliac	4 (5.5)
Common femoral	31 (42.5)
Superficial femoral	34 (46.6)
Popliteal	45 (61.6)
Gastrocnemius	2 (2.7)
Tibial-peroneal trunk	1 (1.4)
Soleal	2 (2.7)
Posterior Tibial	6 (8.2)
Peroneal	2 (2.7)


DVT-related VLUs at our center commonly exhibit significan thrombus involvement in femoral or lower veins at time of

• Timely and effective DVT treatment could curb the extensive costs linked to long-term CVD-related complications


Results

Long-term economic model

Aim 2: We model and estimate the long-term costs associated with ACs or advanced therapy (ADV) at the initial DVT event in a hypothetical patient cohort (n=100).

Estimated long-term costs with AC or Advanced therapy in 100 patients

Conclusions

nt	
DVT	

Results emphasize the need for the community to:

- Identify a method to properly select DVT patients at highrisk for chronic complications like PTS and VLUs
- Establish advanced DVT treatment methods that are proven 2. to effectively reduce risk of CVD progression

Northwell Health® Idemarco2@northwell.edu

Model assumptions

Patients are at high-risk for worsening CVD and VLU Initial DVT is treated with AC or advanced therapy (ADV) A 3-month AC regimen follows initial DVT treatment

A portion of patients treated with ADV will require no further care following Phase 1

Remaining patients enter a period of worsening CVD

At the end of Phase 2, remaining patients develop a

VLU and enter wound care for a 10-year period

If ADV is 20% effective at avoiding VLUs: - Cost beneficial by 10.3 years Costs \$118k less at model completion

If ADV is 40% effective at avoiding VLUs: - Cost beneficial by 3.7 years Costs ~\$2M less at model completion

If ADV is 60% effective at avoiding VLUs: - Cost beneficial by 2.5 years Costs ~\$3.9M less at model completion

Symposium on Advanced

Wound Care