Abstract	Diabetic foot ulcers are a severe complication in diabetic patients, which significantly impact healthcare systems and patient quality of life, often leading to hospitalization and amputation. Traditiona Standard of Care (SOC) treatments are inadequate for many patients, necessitating advanced wound care products (AWCPs) like human placental membranes. This study conducts a retrospective analysis to compare the effectiveness of two human placental membrane products, retention-processed (RE-AC) and lamination-processed (L-AC) in managing diabetic foot ulcers (DFUs). The study collected retrospective observational data from electronic health records (EHRs) of patients treated at three outpatient wound care centers. The analysis employed Bayesian estimation, utilizing ar Analysis of Variance (ANCOVA) model with a Hurdle Gamma likelihood. Results indicated that RE-AC achieved a marginally higher expected Percent Area Reduction (xPAR) compared to L-AC at 12 weeks: RE-AC also required fewer applications, suggesting greater efficiency in general wound closure. The findings suggest that RE-AC offers overall better treatment efficiency, especially in reducing th frequency of applications. This efficiency can lead to improved patient comfort, reduced treatment costs, and optimized resource utilization in healthcare settings.															lal ve dy an ≺s. ne	
Sethods Source	Since this y using the E 1. A total o 2. The rese 3. The subj 4. The stuc The research process of (ANCOVA) Percent Ar appropriate well, and se model is as	was a deidentified retrospecti BioREtain®* method (BioStem of 41 subjects were identified were earchers gained access to the e jects were categorized into tw dy team extracted wound size the dependent variable (viz. model to estimate expected f rea Reduction (xPAR) for both e parameters. Four chains with ampling showed no divergences follows:	ive review of Technolog who met the electronic h o cohorts: in square of egression a wound are ho the RE-Ac ch a total of ces. Our Ef	of previously collies, Pompano Be ne study's inclusion health records (E the RE-AC coho centimeters at n analysis in using ea), which leads the Reduction (x C and L-AC grou f 4,000 draws we fective Samples	lected data, IRB waiver each, FL)) and L-AC (Ep on criteria. HR) of 41 identified subject of the comprising 23 subject nultiple time points and PYMC (Probabilistic P to either right-skewed (PAR) from baseline. The ups. The model was fit ere sampled. The result Statistics (ESS) show the	r was grante offix®) proce jects from t cts) and the d frequenc rogrammin l continuous is is a more with PYMC ting Markov hat our sam	ed. Two wound ssed by the Pu hree outpatie L-AC cohort (y of applications g in Python) e s data, or zero robust approa using uninfor Chain Monte ples have high	d care products urion lamination ent wound care comprising 18 su ons for each pro- estimating the tr o (i.e. a closed w ach that returns rmative priors s Carlo (MCMC) s h resolution, whi	were evaluated method (Mime centers. Jbjects. duct. ceatment effica yound), the rese posterior estim caled to the ra ummary is show ich shows good	d in managedix, Mariet edix, Mariet acy of RE-A earchers un ates for the nge of the wn. The R- I sampling	ging D tta, GA AC rela itilized he prob e data hat sta efficie	OFUs: RE). a Hurd a Hurd bability c and on atistic sh	E-AC (Am -AC. Given le Gamme of a close the log hows that e mather	en the na Ana ed wour and log it our c matical	ap2®) data-ç alysis o nd anc git sca hains l notat	processe generatir f Variance les for the converge ion for the	e ed ed ed
	The Hurdle Component (the probability of a closed wound): $I(u_i > 0) \sim Bernoulli(\pi_i)$ The Gamma Component (Expected Percent Area Reduction (xPAR)): $(u_i - pre_i) \mid I(u_i > 0) \sim Gamma(shape - k_irate - k/u_i)$																
		$logit(\pi_i) = \alpha$	$log(\mu_i) = \theta + \delta group \times group_i + \varepsilon \times pre_i$														
S	The statist Further, the substantive of application required fe	ical analysis revealed that the e probability of the full woun ely similar in terms of complet ions per wound in the RE-AC ns required. The retrospective ewer applications of the produce Table 1 Demographic Overview	e group rec id closure i te wound c group wa analysis re ct to achiev of Cohorts RE-AC	eiving RE-AC ha n the L-AC grou losure, but that s 7.9 versus 10.6 evealed a signific ve wound healin	Id an xPAR that was on up was on average 0.01 RE-AC has a greater ge in the L-AC group, sug cant finding that favor g outcomes that were of 	n average 14 7% percent eneral effect ggesting th red RE-AC of comparable Table 2 Wound and T	An percentage age points greated on wound closed at RE-AC is more over L-AC in the with those treatment Summary RE-AC 16.5	e points (95% cre eater (95% credi osure when both ore than 27% m erms of treatme eated with L-AC.	edible interval: - ble interval: -0. n full and partia nore efficient in ent efficiency fo	-1.0% - 30.12 67%- 0.04% I closure and terms of or wound Figure 1 Ma	2%) gre %). This re cons genera care. F	eater th s sugges sidered. al woun Patients	an the L sts RE-A Moreove d closure who we	-AC gro C and I er, the a e efficie ere trea	oup at L-AC g averag ency ir ated w	12 week roups ar e numbe terms (ith RE-A	s. e er of C
Result	Subjects Age Sex	Female	23 71.0 (11.7%) 5 (22%) 18 (78%)	58.6 (8.1%) 3 (17%) 15 (83%)	(<i>Gamma Likelihood</i>) Product Applications	Variance Mean	(10.9 - 26.1) 0.8 (0.5 - 1.3) 7.9	(8.4 - 24.9) 0.8 (0.4 - 1.3) 10.6	Intercept group[01_AW2]	meansd1.3540.386-0.1450.418	hdi_3% 0.645 -0.961	hdi_97% m 2.104 0.616	ncse_mean 0.006 0.006	mcse_sd 0.005	3924.0 4332.0	2695.0 2897.0 1	1.0 1.0
Result	Subjects Age Sex Race	Female Male Asian Black Hispanic	23 71.0 (11.7%) 5 (22%) 18 (78%) 2 (9%) 1 (4%) 8 (35%)	58.6 (8.1%) 3 (17%) 15 (83%) 0 (0%) 1 (6%) 7 (39%)	(Gamma Likelihood) Product Applications (Negative Binomial Likelihood) Treatment Days	Variance Mean Variance Mean	(10.9 - 26.1) $(0.8$ $(0.5 - 1.3)$ 7.9 $(6.5 - 9.6)$ 8.3 $(3.3 - 23.0)$ 68.2	(8.4 - 24.9) $(0.4 - 1.3)$ 10.6 $(8.6 - 12.9)$ 10.9 $(3.8 - 35)$ 77.3	Intercept group[01_AW2] pre psi_Intercept psi_group[01_AW2]	meansd1.3540.386-0.1450.4180.0330.0081.2220.4880.1850.5880.6900.135	hdi_3% 0.645 -0.961 0.019 0.318 -0.867 0.442	hdi_97% m 2.104 0.616 0.050 2.162 1.300 0.934	ncse_mean 0.006 0.000 0.000 0.007 0.009 0.002	mcse_sd 0.005 0.006 0.000 0.006 0.008 0.002	3924.0 4332.0 3707.0 4782.0 4672.0 4198.0	2695.0 2897.0 2597.0 2925.0 1 2967.0 1 3006.0	1.0 1.0 1.0 1.0 1.0

This comparative analysis highlights the distinct advantages of BioREtain®-processed RE-AC, especially in terms of application efficiency and wound size reduction. RE-AC demonstrated a marginally higher expected Percent Area Reduction (xPAR) over 12 weeks, underscoring its effectiveness in managing wound size. Moreover, RE-AC required fewer applications than L-AC to achieve the same efficacy. RE-AC's reduced application frequency not only enhances patient comfort by lessening the need for repeated treatments but also signifies a more cost-effective and resource-efficient approach in clinical settings which positions it as a more advantageous option in many clinical cases. This study underscores the importance of evaluating both clinical outcomes and practical aspects of treatment in selecting the most suitable intervention for diabetic foot ulcers.

Assessing Placental Membrane Treatment Efficiency in DFUs: Processing for Retention Versus Lamination

Zwelithini Tunyiswa, BA¹ Wendy W Weston, PhD², Robert Frykberg, DPM¹ and Ryan Dirks, PA¹

¹ Open Wound Research, Puyallup, WA, ² BioStem Technologies, Pompano Beach, FL

