The Use of Continuous Topical Oxygen Therapy in Combination with Cellular, Acellular and Matrix-like Products to Treat Complex, Chronic Wounds: A Retrospective Case Series

Introduction

- Historically, chronic wounds are treated with various topical therapies.
- The goals of topical wound management include supporting tissue repair, preventing infection, reducing pain, eliminating devitalized tissue, creating a moist environment, and decreasing edema.
- Clinical studies typically focus on the effectiveness of a singular treatment.
- The objective of this case series is to investigate chronic wound progress when a continuous topical oxygen therapy (cTOT) device was used to optimize the wound environment prior to application of a cellular, acellular and matrix-like product (CAMP).

Methods

- A single-center case study was conducted to examine the outcomes of chronic wounds treated with a combination therapy algorithm consisting of 2 weeks of wound optimization with cTOT followed by CAMPs application.
- Five patients and a total of six wounds were included in this report
- Prior to study enrollment all patients provided written informed consent to publish the case details and associated de-identified image assessments.
- No compensation was provided for participation.
- Subjects had a variety of chronic wound etiologies including both VLUs and DFUs
- All wounds were considered non-healing prior to inclusion as they had failed to achieve at least 50% wound area reduction after at least 4-weeks treatment with standard of care.
- All wounds were negative for clinical signs and symptoms of infection.
- Patients were seen weekly for wound evaluation, assessments, standard photographs, measurements, and near-infrared spectroscopy imaging.

Clinical History

Demographics

Medical History

Wound Etiology

Wound Duration

Week 1 Size (cm) 4.4 x 3.7 (l x w) Moderate drainage, net epithelium, beefy red g tissue base Cleanse, debridement, skin protectant to periadhesive foam, compre follow-up 1 week

Naz Wahab, MD

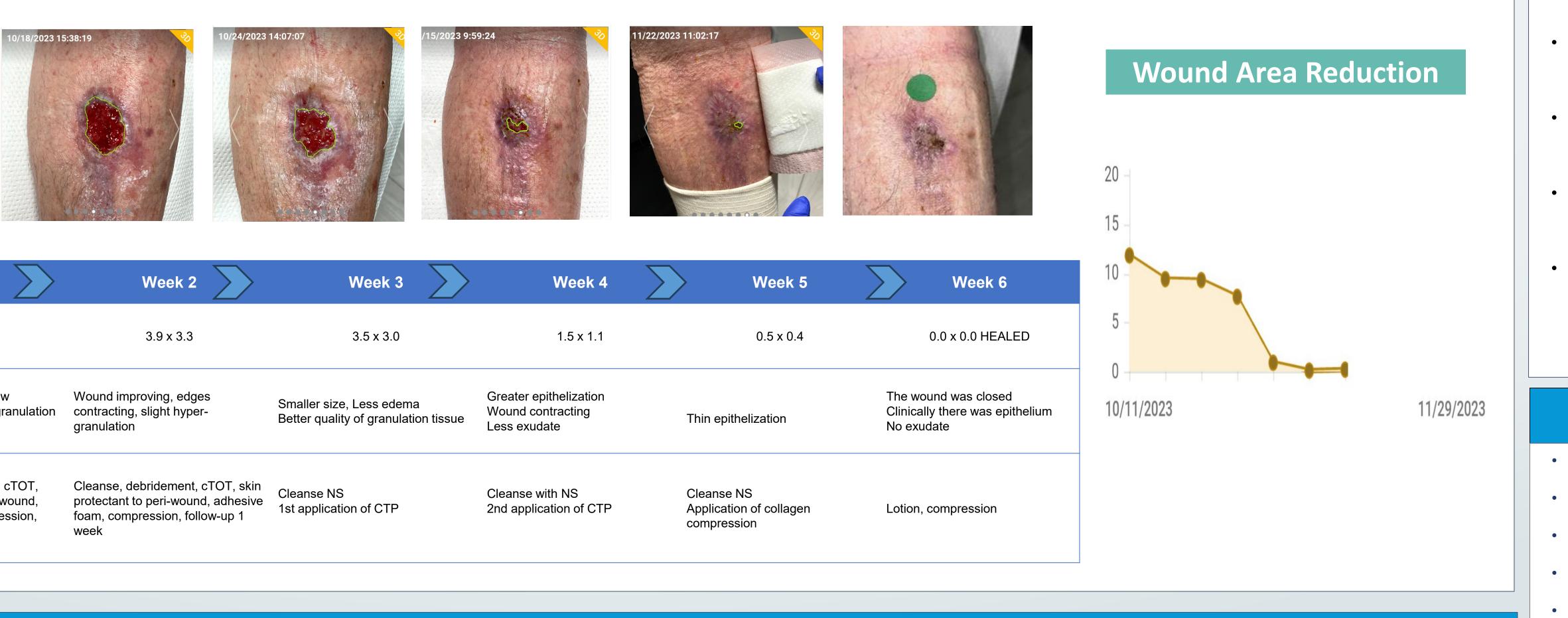
Windy Cole, DPM, CWSP

Case Example

Notes

76 yo Male

Pacemaker, Pancreatic dysfunction, NIDDM Coronary disease, Squamous cell carcinoma


VLU LLE

12 weeks

Previous Treatments Antibiotics, topical antimicrobials, debridement, tubigrip for compression

	Week 2	Week 3	Week 4	Week
7	3.9 x 3.3	3.5 x 3.0	1.5 x 1.1	0.5 x 0.4
new granulation	Wound improving, edges contracting, slight hyper- granulation	Smaller size, Less edema Better quality of granulation tissue	Greater epithelization Wound contracting Less exudate	Thin epithelization
nt, cTOT, ri-wound, pression,	Cleanse, debridement, cTOT, skin protectant to peri-wound, adhesive foam, compression, follow-up 1 week	Cleanse NS 1st application of CTP	Cleanse with NS 2nd application of CTP	Cleanse NS Application of collage compression

Baseline Wound Characteristics: Size (cm): L 5.0 x W 3.2 x D 0.2

Assessment: Non-healing wound of LLE

 Wound had been treated for 6 weeks with Cadexomer iodine and gentian violet/methylene blue foam, Increasing granulation

Treatment: Cleanse wound, debridement, apply cTOT, cover with adhesive foam, compression dressing, follow-up 1 week.

Results

- Five male subjects (six wounds) with an average age of 69 years were included in this case review.
- Wound types included 4 DFUs and 2 VLUs.
- Serial NIRS images showed an increase in tissue StO2 week after 1 week.
- The mean wound area reduction seen in this patient cohort at 6 weeks was 91.25%.
- All patients went on to complete wound resolution by week 12.
- The mean time to wound closure was 6.5 weeks.
- No adverse events were noted.

Discussion

- Wound healing should be approached in a systematic algorithmic way for wound bed optimization
- cTOT is a novel therapy that should be included in the wound bed optimization pathway.
- Changing the oxygen gradient in the wound bed via cTOT helps recruit fibroblast, and epithelial cells to support tissue repair and regeneration.
- cTOT bolsters immune system functions to aid in phagocytosis leading to clearing and disruption of bacteria in the wound bed and peri-wound.
- The authors believe that this combination of topical methods might have synergistic effects and improve wound healing, and the results of this study support this assumption.
- With looming limitations in the number of CAMP applications permitted under various LCD/LCA policies, as well as the constraints in accessing certain CAMPs, finding innovative methods to improve wound healing will have great value across all clinical settings.

References

- Sen, C. K. Wound healing essentials: Let there be oxygen. *Wound Repair and* Regeneration 17, 1–18 (2009)
- Frykberg, R. et al. Use of Topical Oxygen Therapy in Wound Healing. *J Wound Care* 32, S1–S32 (2023)
- Cole *et al*. The use of a topical oxygen therapy system to promote healing in Chronic wounds . Poster SAWC Fall (2020)
- Hunter, P., Greco, E., Cross, K. & Perry, J. Topical Oxygen Therapy Shifts Microbiome Dynamics in Chronic Diabetic Foot Ulcers. Wounds 32, 81–85 (2020).
- Asmis, R., Qiao, M. & Zhao, Q. Low flow oxygenation of full-excisional skin wounds on diabetic mice improves wound healing by accelerating wound closure and reepithelialization. Int Wound J 7, 349–57 (2010)