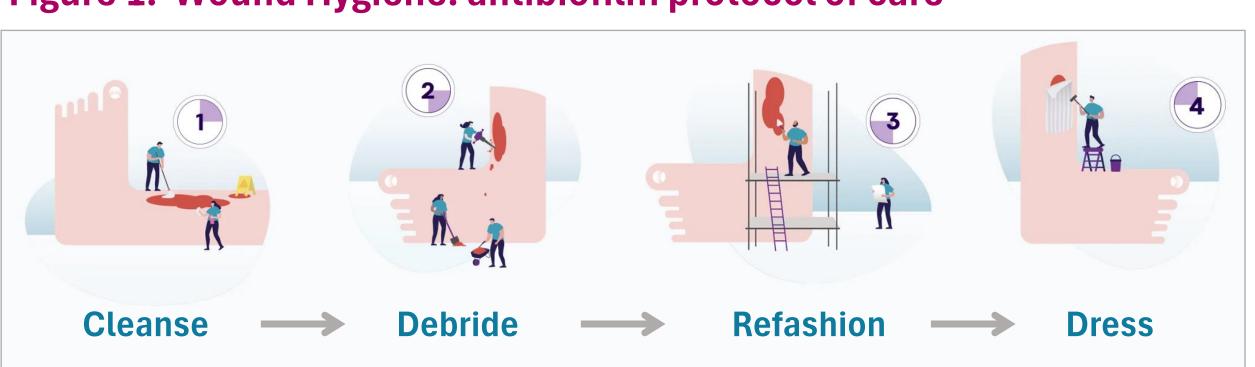
Impact of Wound Hygiene Incorporating an Advanced Antimicrobial Gelling Fiber Dressing on Hard-to-Heal Wounds: Real-World Evidence


Rachel Torkington-Stokes¹, Kate Moran², Diego Sevilla Martinez³, Deborah Cesura Granara⁴, Daniel Gary Metcalf¹

¹Convatec Ltd., Deeside, UK; ²Altnagelvin Area Hospital, Londonderry, UK; ³Centro de Salud Just Ramírez, Valencia, Spain; ⁴Villa Scassi Hospital and ASL3 Network, Liguria, Italy

Introduction

- Hard-to-heal wounds are a major challenge to healthcare systems globally¹
 - Estimated prevalence of 2.21 per 1000 population²
 - Associated with reduced patient health-related quality of life and substantial economic burden^{3,4}
- Bioburden has long been implicated in hard-to-heal wounds⁵
 - At least 78% of hard-to-heal wounds estimated to have biofilm⁶
 - There was an increase in the proportion of wounds with no $(3\% \rightarrow 34\%)$ and low Biofilm can protect microorganisms from antibiotics, antiseptics and host $(26\% \rightarrow 40\%)$ exudate (p<0.001) (Figure 3) immunity⁵
- There was an increase in the proportion of wounds without suspected biofilm Wound Hygiene is 4-step standardized approach to biofilm management and $(12\% \rightarrow 72\%)$ and without infection $(45\% \rightarrow 89\%)$ (Figure 4 and Figure 5) wound care (**Figure 1**)^{7–9} (p<0.001)
- Developed by an international panel of wound care specialists
- Allows biofilm-based wound care to administered early, safely, and consistently in any clinical setting

Figure 1. Wound Hygiene: antibiofilm protocol of care

STUDY OBJECTIVE

To evaluate the impact of Wound Hygiene (incorporating an advanced antimicrobial gelling fiber dressing*) on hard-to-heal wounds

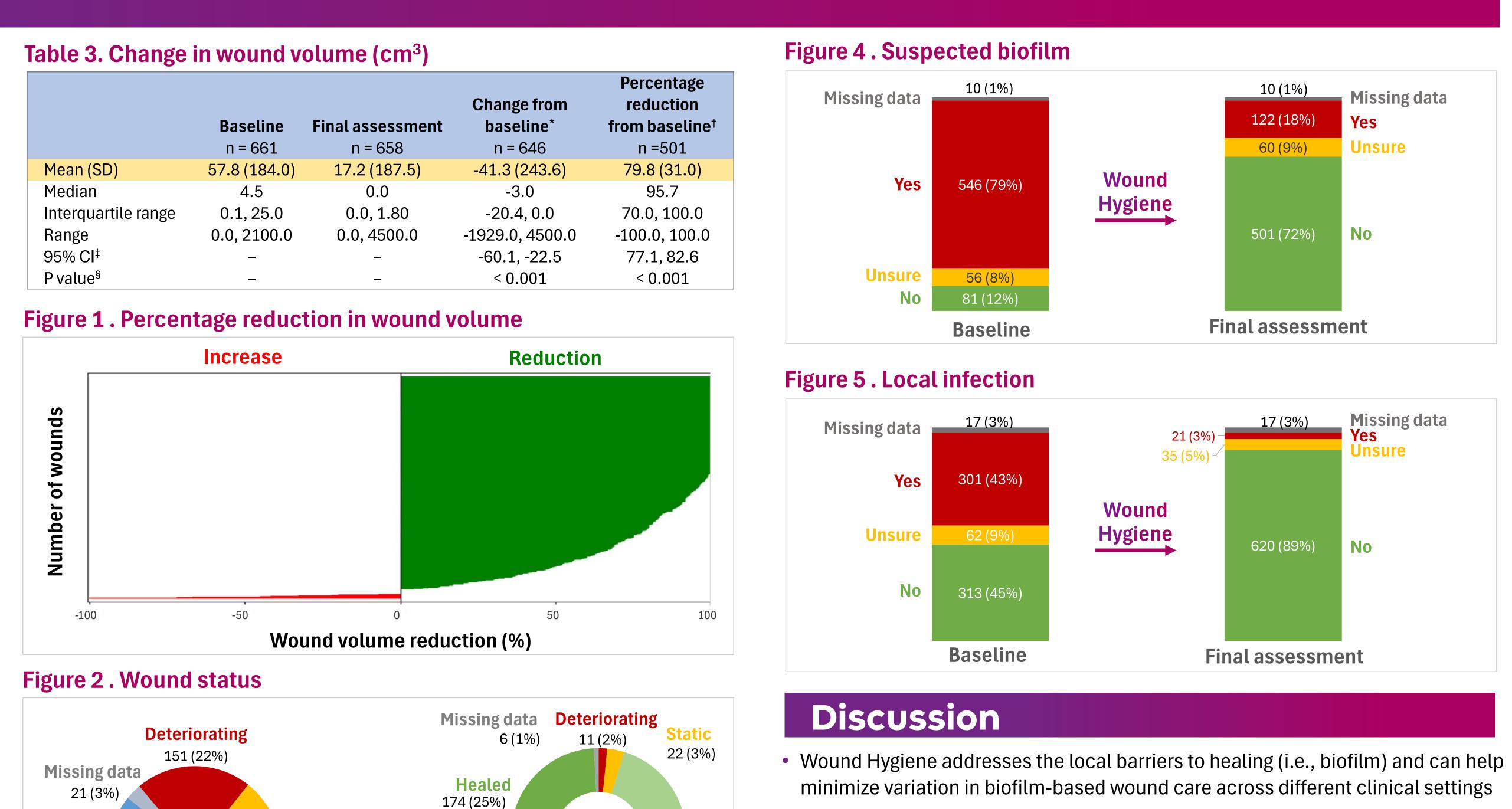
Methods

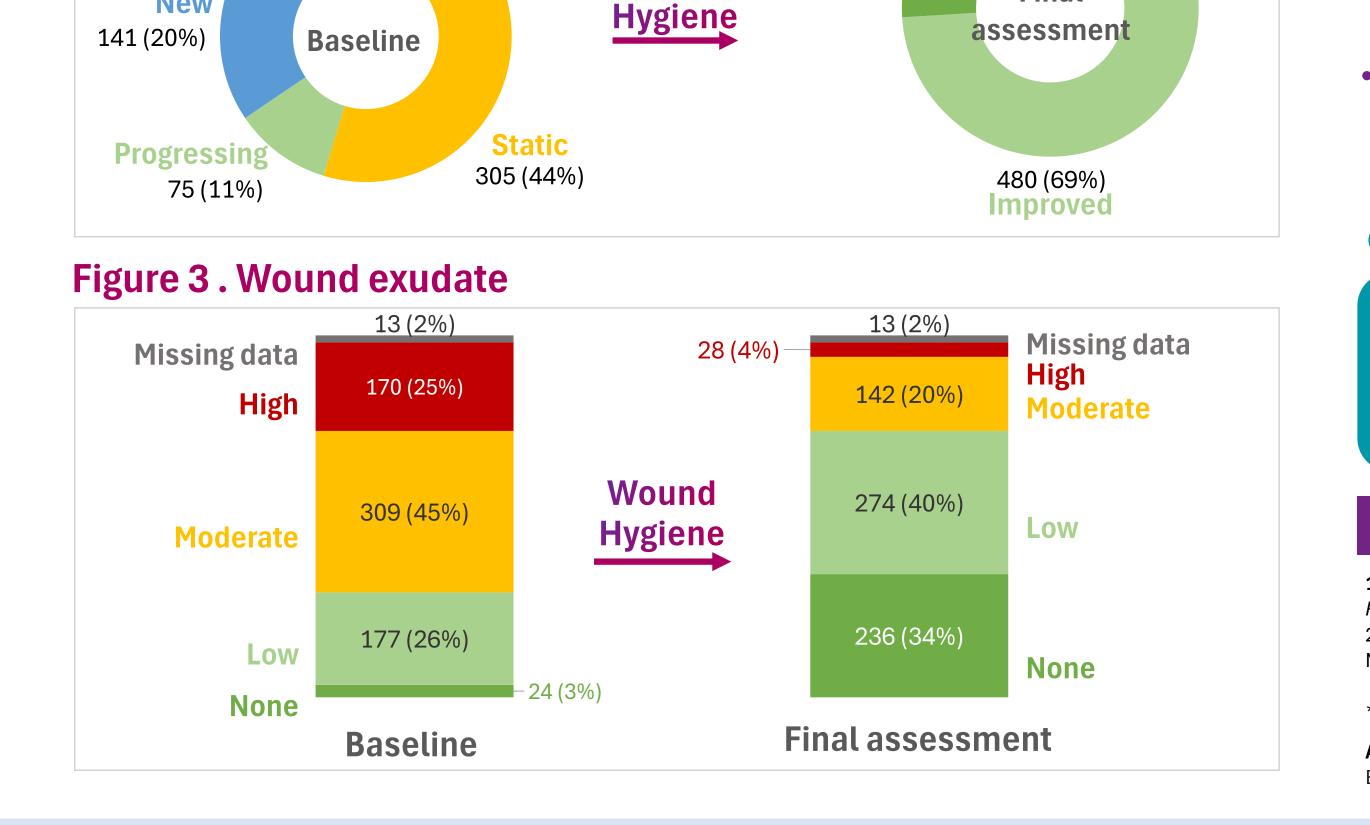
- A prospective, real-world analysis of hard-to-heal wounds managed with Wound Hygiene
- Patients were enrolled from different wound care settings across Spain, Italy, the United Kingdom, Poland, the Netherlands, and Portugal
- Between April 01, 2021 and December 31, 2022, patients were managed with Wound Hygiene (incorporating a CMC dressing containing ionic silver, EDTA and BEC^{*}) for approximately 4 weeks or as deemed clinically appropriate
- The primary endpoint was change in wound volume from baseline to final assessment
- Secondary endpoints were qualitative changes in exudate levels, suspected biofilm, and signs of local infection

Results

- A total of 693 wounds were included in the analysis (**Table 1** and **Table 2**)
- After a median treatment time of 31 days, there was a statistically significant 80% mean reduction in baseline wound volume (p<0.001) (Table 3 and Figure 1)
- At the final assessment, most wounds had improved (69%) or healed (25%), and only a small proportion were deteriorating (22% \rightarrow 2%) or static (44% \rightarrow 3%) (Figure 2)

d
M




Table 1. Patient demographics and clinical settings

	Wounds (N=693)
Patient age, median (range)	74 (18–101)
Sex, n (%)	
Male	310 (45)
Female	380 (55)
Missing	3 (0.4)
Country, n (%)	
Italy	197 (28)
Spain	178 (26)
United Kingdom	144 (21)
Poland	116 (17)
The Netherlands	52 (8)
Portugal	6(1)
HCP, n (%)	
General nurse	349 (50)
Nurse practitioner	260 (38)
Physician	36 (5)
Podiatrist	27 (4)
Healthcare assistant	8 (1)
Other	7(1)
Missing	6(1)
Clinical setting, n (%)	
Patient home	190 (27)
Community clinic	186 (27)
Outpatient clinic	124 (18)
Hospital	98 (14)
Post-acute facility	62 (9)
Care home	20 (3)
Physician office	13 (2)
Other	7(1)
Missing	1(0.1)

Table 2. Baseline wound characteristics

	Wounds		
Wound type, n (%)	(N=693)		
Legulcer	272 (39)		
Venous	183 (26)		
Arterial	11 (2)		
Mixed	50 (7)		
Unknown	28 (4)		
Pressure ulcer/injury	120 (17)		
Diabetic foot ulcer	66 (10)		
Surgical wound	59 (9)		
Traumatic wound	81 (12)		
Cavity wound	16 (2)		
Malignant wound	4 (1)		
Moisture lesion	4 (1)		
Weeping oedema	4 (1)		
Skin tear	33 (5)		
Other	34 (5)		
Wound duration, n (%)			
< 7 days	56 (8)		
7–14 days	47 (7)		
2–4 weeks	92 (13)		
4–8 weeks	95 (14)		
2–3 months	95 (14)		
3–6 months	88 (13)		
6–12 months	74 (11)		
> 12 months	143 (21)		
Missing data	3 (0.4)		
Additional therapies, n (%)			
Antibiotics	230 (33)		
Compression bandaging	203 (29)		
Analgesics	149 (22)		
None	131 (19)		
Other	111 (16)		
Compression hosiery	64 (9)		
Equipment (e.g., pressure relieving / offloading device)	61 (9)		

Wound

New

Final

Presented at Symposium on Advanced Wound Care (SAWC) Spring 2024, May 14–18, Orlando, USA

- minimize variation in biofilm-based wound care across different clinical settings
- Incorporation of an advanced antimicrobial gelling fiber dressing dressing may further facilitate wound healing by helping to reduce overall bioburden
- From participating HCPs responses (n=693), nearly all would routinely adopt Wound Hygiene in clinical practice (99%) and would continue to use (97%) or recommend (99%) the antibiofilm dressing

CONCLUSION

Management of hard-to-heal wounds with Wound Hygiene (incorporating an advanced antimicrobial gelling fiber dressing*) was associated with statistically significant reductions in wound volume and qualitative reductions in exudate, suspected biofilm, and infection

References & Footnotes

I. Rice JB et al. Diabetes Care 2014;37(3):651–658. **2.** Martinengo L et al. Ann Epidemiol 2019;29:8–15. **3.** Olsson M et al. Wound Repair Regen 2019;27(1):114–125. **4.** Chan B et al. *J Wound Car*e 2017;26(Suppl 4):S4–S14. **5.** James GA et al. *Wound Repair Regen* 2008;16(1):37–44. 6. Malone M et al. J Wound Care 2017;26(1):20–25. 7. Murphy C et al. J Wound Care 2020;29(Sup3b):S1–S26. 8. Murphy C et al. J Wound Care 2019;28(12):818–822. 9. Murphy C et al. J Wound Care 2021;30(7):582–590.

*Aquacel[®] Ag+ Extra[™] (Aquacel Ag Advantage in the United States).

Abbreviations: CMC: carboxymethylcellulose; BEC: benzethonium chloride; HCP: healthcare professional; EDTA: ethylenediaminetetraacetic acid.