The antimicrobial activity of silver-containing dressings against surface-associated microorganisms in a dual-species community

Kate Meredith, PhD¹, Matilda Coleborn, MSc¹, Lucy Forbes, BSc¹, Daniel Metcalf, PhD¹ ¹Convatec Ltd, Deeside, UK

Introduction

- Microorganisms found in hard-to-heal wounds are invariably present in a surface-attached phenotype¹
- These surface- and self-attached microbial communities usually contain multiple species²
- This polymicrobial nature of wound bioburden increases virulence and tolerance to antimicrobial agents^{3,4}
- We evaluated antimicrobial dressings containing silver against surfacedassociated microorganisms in a dual-species community grown in a stringent simulated wound model

STUDY OBJECTIVE

The aim of this *in vitro* study was to evaluate the effectiveness of different antimicrobial dressings against dual species communities grown in a simulated wound model

Results

- **CISEB** dressing was observed to reduce the dual-species community within 24 hours with a >4 \log_{10} kill observed for K. pneumoniae and a >6 \log_{10} for MRSA from an initial challenge of $\sim 1 \times 10^8$ CFU/mL for each separate challenge organisms present
- This kill rate was sustained for the duration of the challenge period, with **CISEB** dressing reducing the dua-species community to non-detectable levels (<30 CFU per test) by 72 hours for *K. pneumoniae* and by 48 hours for MRSA
- **PPSO** dressing demonstrated an initial reduction at 6 hours of $\sim 2 \log_{10}$ for both *K. pneumoniae* and MRSA. However, this dressing was unable to further reduce the population after this time, with bacterial numbers at subsequent timepoints being similar to or greater than those at 6 hours for both bacterial species
- **CESIS** dressing exhibited a slight, gradual reduction in bacterial numbers for the dual-species community over the course of the test period, reducing each challenge organism by ~2.5 \log_{10} in 72 hours
- **PSS** dressing was shown to have little to no impact on the dual-species community, with levels remaining similar or greater than those recovered before dressing application, the initial growth (the T_{0hr} count)
- The no-dressing control demonstrated that the dual-species community remained viable throughout the test period and that species population proportionality was maintained

Methods

Test dressings

- Carboxymethylcellulose dressing containing ionic silver, ethylenediam (EDTA), and benzethonium chloride (BEC) ('CISEB')
- Non-adherent polyethylene mesh with polyester core dressing contai (**'PPSO'**)
- Cellulose ethyl sulphonate fibre dressing containing ionic silver ('CESIS')
- Polyacrylate (polyabsorbent) fiber dressing with acrylic core containing silv
- Secondary film cover dressing

Challenge organisms

- *Klebsiella pneumoniae* (NCTC 9156)
- Community-associated Methicillin-resistant Staphylococcus aureus (CA-1556, clone of USA300

Figure 1. Antimicrobial activity of test dressings against a surface-attached dual-species community (total population) of *K. pneumoniae* and CA-MRSA over a 72-hour test period.

Figure 2. Antimicrobial activity of test dressings against a surface attached dual-species community (challenge organisms shown individually) of K. pneumoniae and CA-MRSA over a 72- hour test period. The data has been normalized by subtracting the limit of detection (30 CFU).

	Protocol
minetetraacetic acid	 Challenge organisms were grown on gauze for 24 initial inoculum number of ~1×10⁶ colony forming
ning silver oxysalts	 Following incubation, the gauze-attached dual-s placed on the central contact plate within a simu establish initial bacteria numbers
lver sulphate (' <mark>PSS</mark> ')	 The SWA consisted of a bovine leather-covered Per 55 mm diameter agar contact plate (simulating a dual-species communities
	• The simulated wound area was covered with th simulated wound fluid (50/50 Maximum Recovery
	 The SWA was incubated at 35±3 °C for 6, 24, 48, a
A-MRSA; ATTC [∞] BAA [™] -	 At each timepoint, enumeration of surviving bac equivalent control; whereby no dressing was appli

CONCLUSION

References & Footnotes

1.Malone M et al. J Wound Care 2017;26(1):20–25. **CISEB**: Aquacel[®] Ag+ Extra[™] (Convatec, UK) 2.Wolcott R et al. *Clin Microbiol Infect* 2013;19(2):107–112. **PPSO:** KerraContact[®] Ag (Crawford Healthcare, UK) 3.Anju VT et al. Antibiotics (Basel) 2022;11(12):1731. **CESIS**: Durafiber Ag (Smith & Nephew, UK) 4.Orazi G & O'Toole GA. *J Bacteriol* 2019;202(1):e00530-19. S: UrgoClean Ag (Urgo Medical, UK) Secondary film cover dressing: Tegaderm[™] (3M 5.Bowler P & Parsons D. Wound Medicine 2016;14:6–11. Health Care, UK)

hours in a nutritious broth and fetal bovine serum (FBS) mixture with an gunits (CFU)/mL in total

species community was rinsed twice to remove planktonic bacteria and ulated wound assembly (SWA), and total viable counts were performed to

erspex plate (simulating peri-wound skin), surrounding a central insert of a a moist wound bed with a reservoir of isotonic nutrients), supporting the

ne test primary dressing (10×10 cm samples) and hydrated with 8 mL / Diluent: FBS)

and 72 hours

cteria was performed, with n=3 for each test dressing and n=1 for the ied to the surface attached dual species community

Discussion

• The surface-attached dual-species community considers the polymicrobial nature of microbial communities found clinically, and this study showed that not all silvercontaining dressings are equally effective against these complex communities

• It is important that wound dressings contain proven additional components, that can aid in the breakdown of these surface-attached communities, as well as an antiseptic agent, to ensure the effective reduction of polymicrobial surfaceattached communities.

Using a surface-attached dual-species community in a stringent in vitro test, it was demonstrated that not all silver-containing dressings can reduce these types of microbial communities. Only CISEB showed enhanced activity, which may be attributed to the additional agents contained within the dressing – EDTA and BEC – in addition to ionic silver